Featured Research

from universities, journals, and other organizations

Nanotubes Act As 'Thermal Velcro' To Reduce Computer-chip Heating

Date:
May 2, 2006
Source:
Purdue University
Summary:
Engineers have created carpets made of tiny cylinders called carbon nanotubes to enhance the flow of heat at a critical point where computer chips connect to cooling devices called heat sinks, promising to help keep future chips from overheating.

Engineers have created carpets made of tiny cylinders called carbon nanotubes to enhance the flow of heat at a critical point where computer chips connect to cooling devices called heat sinks, promising to help keep future chips from overheating.

Related Articles


Researchers are trying to develop new types of "thermal interface materials" that conduct heat more efficiently than conventional materials, improving overall performance and helping to meet cooling needs of future chips that will produce more heat than current microprocessors. The materials, which are sandwiched between silicon chips and the metal heat sinks, fill gaps and irregularities between the chip and metal surfaces to enhance heat flow between the two.

Purdue University researchers have made several new thermal interface materials with carbon nanotubes, including a Velcro-like nanocarpet.

"The bottom line is the performance that we see with nanotubes is significantly better than comparable state-of-the-art commercial materials," said Timothy Fisher, an associate professor of mechanical engineering who is leading the research. "Carbon nanotubes have excellent heat-conduction properties, and our ability to fabricate them in a controlled manner has been instrumental in realizing this application."

Recent findings have shown that the nanotube-based interfaces can conduct several times more heat than conventional thermal interface materials at the same temperatures. The nanocarpet, called a "carbon nanotube array thermal interface," can be attached to both the chip and heat sink surfaces.

"We say it's like Velcro because it creates an interwoven mesh of fibers when both sides of the interface are coated with nanotubes," Fisher said. "We don't mean that it creates a strong mechanical bond, but the two pieces come together in such a way that they facilitate heat flow, becoming the thermal equivalent of Velcro. In some cases, using a combination of nanotube material and traditional interface materials also shows a strong synergistic effect."

Findings related to the combination of carbon nanotubes and traditional interface materials are detailed in a paper appearing in the May issue of the International Journal of Heat and Mass Transfer. The paper was written by mechanical engineering doctoral student Jun Xu and Fisher.

Heat is generated at various points within the intricate circuitry of computer chips and at locations where chips connect to other parts. As heat flows through conventional thermal interface materials, the temperature rises about 15 degrees Celsius, whereas the nanotube array material causes a rise of about 5 degrees or less.

It will be necessary to find more efficient thermal interface materials in the future because as computer chips become increasingly more compact, more circuitry will be patterned onto a smaller area, producing additional heat. Excess heat reduces the performance of computer chips and can ultimately destroy the delicate circuits.

The nanotubes range in diameter from less than one nanometer to about 100 nanometers. A nanometer is a billionth of a meter, or about the distance of 10 atoms strung together.

The nanotube carpets also might have military and other commercial applications for cooling "power electronics," which are systems that control and convert the flow of electrical power so that it can be used for various purposes on an aircraft, ship or vehicle.

The research has been funded by Purdue's Cooling Technologies Research Center, supported by the National Science Foundation, industry and Purdue to help corporations develop miniature cooling technologies for a wide range of applications, from electronics and computers to telecommunications and advanced aircraft. Applications in power electronics are being supported by the Air Force Research Laboratory in association with the Birck Nanotechnology Center at Purdue's Discovery Park.

The technology is ready for commercialization and is being pursued by several corporate members of the cooling research center, including Nanoconduction Inc., a startup company in Sunnyvale, Calif., which is a new member of the cooling center.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "Nanotubes Act As 'Thermal Velcro' To Reduce Computer-chip Heating." ScienceDaily. ScienceDaily, 2 May 2006. <www.sciencedaily.com/releases/2006/05/060502171803.htm>.
Purdue University. (2006, May 2). Nanotubes Act As 'Thermal Velcro' To Reduce Computer-chip Heating. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2006/05/060502171803.htm
Purdue University. "Nanotubes Act As 'Thermal Velcro' To Reduce Computer-chip Heating." ScienceDaily. www.sciencedaily.com/releases/2006/05/060502171803.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cablevision Enters Wi-Fi Phone Fray

Cablevision Enters Wi-Fi Phone Fray

Reuters - Business Video Online (Jan. 26, 2015) The entry by Cablevision and Google could intensify the already heated price wars for mobile phone service. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Hector the Robot Mimics a Giant Stick Insect

Hector the Robot Mimics a Giant Stick Insect

Reuters - Innovations Video Online (Jan. 26, 2015) A robot based on a stick insect can navigate difficult terrain autonomously and adapt to its surroundings. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com
Obama's Wildlife Plan Renews Alaska Drilling Debate

Obama's Wildlife Plan Renews Alaska Drilling Debate

Newsy (Jan. 26, 2015) President Obama&apos;s proposal aims to protect more land in the Arctic National Wildlife Refuge, but so far, all that&apos;s materialized is a war of words. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins