Featured Research

from universities, journals, and other organizations

Meteorites Discovered To Carry Interstellar Carbon

Date:
May 5, 2006
Source:
Carnegie Institution
Summary:
Scientists at the Carnegie Institution have discovered that meteorites can carry primitive, organic particles that originated billions of years ago either in interstellar space, or in the outer reaches of the solar system when it was beginning to coalesce. They showed that the parent bodies of meteorites -- the large objects from the asteroid belt -- contain primitive organic matter similar to that found in interplanetary dust particles. The finding provides clues to how organic matter evolved in the solar system.

These tiny particles, from carbonaceous chondrite meteorites, are just a few millionths of a meter wide and have different proportions of nitrogen (N) and hydrogen (H and D) isotopes. These isotopes are chemically bonded to meteoritic organic matter and can reveal a lot about what happened to the meteorite as it made its way through the solar system over billions of years. The two images show the regions with high levels of 15N and heavy hydrogen (deuterium or D)-indications that the associated carbon is very old and originated from interstellar matter or the outer regions of the solar system.
Credit: Image courtesy Henner Busemann

Washington, DC. Like an interplanetary spaceship carrying passengers, meteorites have long been suspected of ferrying relatively young ingredients of life to our planet. Using new techniques, scientists at the Carnegie Institution's Department of Terrestrial Magnetism have discovered that meteorites can carry other, much older passengers as well--primitive, organic particles that originated billions of years ago either in interstellar space, or in the outer reaches of the solar system as it was beginning to coalesce from gas and dust. The study shows that the parent bodies of meteorites--the large objects from the asteroid belt--contain primitive organic matter similar to that found in interplanetary dust particles that might come from comets. The finding provides clues about how organic matter was distributed and processed in the solar system during this long-gone era. The work is published in the May 5, 2006, issue of Science.

"Atoms of different elements come in different forms, or isotopes, and the relative proportions of these depend on the environmental conditions in which their carriers formed, such as the heat encountered, chemical reactions with other elements, and so forth," explained lead author Henner Busemann. "In this study we looked at the relative amounts of different isotopes of hydrogen (H) and nitrogen (N) associated with tiny particles of insoluble organic matter to determine the processes that produced the most pristine type of meteorites known. The insoluble material is very hard to break down chemically and survives even very harsh acid treatments."

The researchers used a microscopic imaging technique to analyze the isotopic composition of insoluble organic matter from six carbonaceous chondrite meteorites--the oldest type known. The relative proportion of isotopes of nitrogen and hydrogen associated with the insoluble organic matter act as "fingerprints" and can reveal how and when the carbon was formed. The isotope of nitrogen that is most often found in nature is 14N; its heavier sibling is 15N. Differing amounts of 15N, in addition to a heavier form of hydrogen called deuterium, (D), allow researchers to tell if a particle is relatively unaltered from the time when the solar system was first forming.

"The tell-tale signs are lots of deuterium and 15N chemically bonded to carbon," commented co-author Larry Nittler. "We have known for some time, for instance, that interplanetary dust particles (IDP), collected from high-flying airplanes in the upper atmosphere, contain huge excesses of these isotopes, probably indicating vestiges of organic material that formed in the interstellar medium. The IDPs have other characteristics indicating that they originated on bodies--perhaps comets--that have undergone less severe processing than the asteroids from which meteorites originate."

The scientists found that some meteorite samples, when examined at the same tiny scales as interplanetary dust particles, actually have similar or even higher abundances of 15N and D than those reported for IDPs. "It's amazing that pristine organic molecules associated with these isotopes were able to survive the harsh and tumultuous conditions present in the inner solar system when the meteorites that contain them came together," reflected co-author Conel Alexander. "It means that the parent bodies--the comets and asteroids--of these seemingly different types of extraterrestrial material are more similar in origin than previously believed."

"Before, we could only explore minute samples from IDPs. Our discovery now allows us to extract large amounts of this material from meteorites, which are large and contain several percent of carbon, instead of from IDPs, which are on the order of a million million times less massive. This advancement has opened up an entirely new window on studying this elusive period of time," concluded Busemann.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Cite This Page:

Carnegie Institution. "Meteorites Discovered To Carry Interstellar Carbon." ScienceDaily. ScienceDaily, 5 May 2006. <www.sciencedaily.com/releases/2006/05/060505192530.htm>.
Carnegie Institution. (2006, May 5). Meteorites Discovered To Carry Interstellar Carbon. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2006/05/060505192530.htm
Carnegie Institution. "Meteorites Discovered To Carry Interstellar Carbon." ScienceDaily. www.sciencedaily.com/releases/2006/05/060505192530.htm (accessed September 2, 2014).

Share This




More Space & Time News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: NASA Captures Solar Flare

Raw: NASA Captures Solar Flare

AP (Sep. 1, 2014) NASA reported the sun emitted a mid-level solar flare, on August 24th. NASA's Solar Dynamics Observatory captured the images of the flare, which erupted on the left side of the sun. (Sept. 1) Video provided by AP
Powered by NewsLook.com
Space Shuttle Discovery's Legacy, 30 Years Later

Space Shuttle Discovery's Legacy, 30 Years Later

Newsy (Aug. 30, 2014) The space shuttle Discovery launched for the very first time 30 years ago. Here's a look back at its legacy. Video provided by Newsy
Powered by NewsLook.com
Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins