Featured Research

from universities, journals, and other organizations

RNA Interference Stops Colon Cancer Spread In Mice

Date:
May 24, 2006
Source:
University of Texas Medical Branch at Galveston
Summary:
Using one of the newest and most powerful tools of biomedical science, University of Texas Medical Branch at Galveston (UTMB) researchers have scored a dramatic success in the battle against colorectal cancer. The scientists were the first to use what are known as "small interfering RNAs" to block the spread of human colorectal cancer cells implanted in laboratory mice.

Using one of the newest and most powerful tools of biomedical science, University of Texas Medical Branch at Galveston (UTMB) researchers have scored a dramatic success in the battle against colorectal cancer.

The scientists were the first to use what are known as "small interfering RNAs" to block the spread of human colorectal cancer cells implanted in laboratory mice. Small interfering RNAs (siRNAs), first described in 2001, are tiny bits of genetic material that can prevent the translation of genes into proteins -- including specific proteins involved in biochemical reactions that promote cancer and other diseases.

According to the federal Centers for Disease Control and Prevention, colorectal cancer is the country's second leading cancer killer. In 2002, the most recent year for which statistics are available, 70,651 men and 68,883 women were diagnosed with the colorectal cancer in the United States; 28,471 men and 28,132 women died from the disease.

"What's exciting about this is that by using siRNAs we were able to selectively block components of the PI3K pathway, a biochemical pathway that is activated in a number of cancers, and suppress the spread of colon cancer in experimental animals," said UTMB professor of surgery B. Mark Evers, senior author of a paper on the research published in the June issue of Annals of Surgery. "Over the last couple of years people have talked a lot about cell-culture studies of siRNAs, but only a handful of labs have pushed it to animal models, which we need to do before going on to clinical trials."

To study the effects of siRNAs targeted against the PI3K pathway in mice, the researchers used a well-established technique in which human colorectal cancer cells were implanted into the spleens of genetically engineered immune-deficient "nude" mice. They then injected siRNAs designed to prevent the production of two specific PI3K proteins into the mice. The result was a major reduction in the spread of colorectal cancer to the liver.

Evers and the paper's other authors -- UTMB research fellows Piotr Rychahou and Lindsey Jackson and pathology professor Srinivasan Rajaraman -- also conducted a detailed analysis of the PI3K pathway's components and did experiments to determine how their siRNAs would affect colorectal cancer cell cultures. Scientists have already developed chemical inhibitors to attack the pathway (some of which are now in clinical trials), but toxic side effects limit their use.

"When we treat with siRNA and then follow the treatment with standard chemotherapeutic agents, we can markedly increase the rate at which cancer cells are killed," Evers said. "Since we have not seen any toxicity with these siRNAs in our mice, we think we can potentially also use them as a way to sensitize tumors and launch a combined attack that will allow us to achieve much better results with reduced side effects."


Story Source:

The above story is based on materials provided by University of Texas Medical Branch at Galveston. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas Medical Branch at Galveston. "RNA Interference Stops Colon Cancer Spread In Mice." ScienceDaily. ScienceDaily, 24 May 2006. <www.sciencedaily.com/releases/2006/05/060524124401.htm>.
University of Texas Medical Branch at Galveston. (2006, May 24). RNA Interference Stops Colon Cancer Spread In Mice. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2006/05/060524124401.htm
University of Texas Medical Branch at Galveston. "RNA Interference Stops Colon Cancer Spread In Mice." ScienceDaily. www.sciencedaily.com/releases/2006/05/060524124401.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) — A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) — Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) — A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) — A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins