Featured Research

from universities, journals, and other organizations

When Galaxies Collide: Supercomputers Reproduce Fluid Motions Of Cosmic Duet

Date:
May 31, 2006
Source:
University of Chicago
Summary:
A wispy collection of atoms and molecules fuels the vast cosmic maelstroms produced by colliding galaxies and merging supermassive black holes, according to some of the most advanced supercomputer simulations ever conducted on this topic.

In this image from a supercomputer simulation, two galaxies have merged into a single structure and the formation of a nuclear disk of gas. These nuclear disks are believed to provide the fuel that feeds the supermassive black holes in galaxies.
Credit: Image courtesy of Stelios Kazantzidis

A wispy collection of atoms and molecules fuels the vast cosmic maelstroms produced by colliding galaxies and merging supermassive black holes, according to some of the most advanced supercomputer simulations ever conducted on this topic.

"We found that gas is essential in driving the co-evolution of galaxies and supermassive black holes," said Stelios Kazantzidis, a Fellow in the University of Chicago's Kavli Institute for Cosmological Physics. He and his collaborators published their in February on astro-ph, an online repository of astronomical research papers. They also are preparing another study.

The collaboration includes Lucio Mayer from the Swiss Federal Institute of Technology, Zurich, Zwitzerland; Monica Colpi, University Milano-Bicocca, Italy; Piero Madau, University of California, Santa Cruz; Thomas Quinn, University of Washington; and James Wadsley, McMaster University, Canada. "This type of work became possible only recently thanks to the increased power of supercomputers," Mayer said. Improvements in the development of computer code that describes the relevant physics also helped, he said.

"The combination of both code and hardware improvement makes it possible to simulate in a few months time what had required several years of computation time only four to five years ago."

The findings are good news for NASA's proposed LISA (Laser Interferometer Space Antenna) mission. Scheduled for launch in 2015, LISA's primary objective is to search the early universe for gravitational waves. These waves, never directly detected, are predicted in Einstein's theory of general relativity.

"At very early times in the universe there was a lot of gas in the galaxies, and as the Universe evolved the gas was converted into stars," Kazantzidis said. And large amounts of gas mean more colliding galaxies and merging supermassive black holes. "This is important because LISA is detecting gravitational waves. And the strongest source of gravitational waves in the universe will be from colliding supermassive black holes," he said.

Many galaxies, including the Milky Way galaxy that contains the sun, harbor supermassive black holes at their center. These black holes are so gravitationally powerful that nothing, including light, can escape their grasp.

Today the Milky Way moves quietly through space by itself, but one day it will collide with its nearest neighbor, the Andromeda galaxy. Nevertheless, the Milky Way served as a handy model for the galaxies in the merging supermassive black hole simulations. Kazantzidis's team simulated the collisions of 25 galaxy pairs to identify the key factors leading to supermassive black hole mergers.

For these mergers to occur, the host galaxies must merge first. Two gas-poor galaxies may or may not merge, depending on the structure of the galaxies. But whenever gas-rich galaxies collide in the simulations, supermassive black-hole mergers typically followed.

"The more supermassive black holes that you predict will merge, the larger the number of sources that LISA will be able to detect," Kazantzidis said. As two galaxies begin to collide, the gas they contain loses energy and funnels into their respective cores. This process increases the density and stability of the galactic cores. When these cores merge, the supermassive black holes they host also merge. When these cores become disrupted, their supermassive black holes fail to merge.

Each simulation conducted by Kazantzidis consumed approximately a month of supercomputing time at the University of Zurich, the Canadian Institute for Theoretical Astrophysics, or the Pittsburgh Supercomputing Center.

The simulations are the first to simultaneously track physical phenomena over vastly differing scales of time and space. "The computer can focus most of its power in the region of the system when many things are happening and are happening at a faster pace than somewhere else," Mayer said.

When galaxies collide, the billions of stars contained in them fly past one another at great distances. But their surrounding gravity fields do interact, applying the cosmic brakes to the two galaxies' respective journeys. The galaxies separate, but they come back together, again and again for a billion years. At each step in the process, the galaxies lose speed and energy.

"They come closer and closer and closer until the end, when they merge," Kazantzidis said. The simulations have produced effects that astronomers have observed in telescopic observations of colliding galaxies. Most notable among these is the formation of tidal tails, a stream of stars and gas that is ejected during the collision by the strong tidal forces.

On a smaller scale, astronomers also observe that colliding galaxies display increased nuclear activity as indicated by brighter cores and increased star formation.

Despite the success of the simulations, Kazantzidis and his team still work to improve their results. "It's a struggle every day to increase the accuracy of the computation," he said.


Story Source:

The above story is based on materials provided by University of Chicago. Note: Materials may be edited for content and length.


Cite This Page:

University of Chicago. "When Galaxies Collide: Supercomputers Reproduce Fluid Motions Of Cosmic Duet." ScienceDaily. ScienceDaily, 31 May 2006. <www.sciencedaily.com/releases/2006/05/060531163900.htm>.
University of Chicago. (2006, May 31). When Galaxies Collide: Supercomputers Reproduce Fluid Motions Of Cosmic Duet. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2006/05/060531163900.htm
University of Chicago. "When Galaxies Collide: Supercomputers Reproduce Fluid Motions Of Cosmic Duet." ScienceDaily. www.sciencedaily.com/releases/2006/05/060531163900.htm (accessed April 17, 2014).

Share This



More Space & Time News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Baby Moon 'Peggy' Spotted In Saturn's Rings

New Baby Moon 'Peggy' Spotted In Saturn's Rings

Newsy (Apr. 15, 2014) — A bump in the rings could be a half-mile-wide miniature moon. It was found by accident in Cassini probe images. Video provided by Newsy
Powered by NewsLook.com
Americas Glimpse Total Lunar Eclipse

Americas Glimpse Total Lunar Eclipse

AFP (Apr. 15, 2014) — A total lunar eclipse, the first since December 2011, took place early Tuesday morning with the Americas getting the best glimpse. Duration: 1:19 Video provided by AFP
Powered by NewsLook.com
NASA Showcases Lunar Eclipse

NASA Showcases Lunar Eclipse

AP (Apr. 15, 2014) — Star gazers in parts of North and South America got a rare treat early Tuesday morning - a total eclipse of the moon. (April 15) Video provided by AP
Powered by NewsLook.com
Spacecrafts Could Use Urine As Fuel Source

Spacecrafts Could Use Urine As Fuel Source

Newsy (Apr. 15, 2014) — New research says the urea from urine could be recycled for fuel. Urea is filtered out of wastewater when making drinking water. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins