Featured Research

from universities, journals, and other organizations

Team Invents Way To Mass Produce Microscopic Plastic Components

Date:
June 5, 2006
Source:
University Of Maryland, College Park
Summary:
Plastic parts in kitchenware, children's toys, and even automobiles are generally mass-produced with a molding process. But mass producing complicated plastic micro components, so small you can only see them with a microscope, has been difficult. University of Maryland researchers now report the development of a new technique that promises to make the mass production of complex plastic microstructures a routine, one-step process.

Master structure of plastic micro table with PDMS wall.
Credit: Image The Fourkas Group

Plastic parts in kitchenware, children’s toys, and even automobiles are generally mass-produced with a molding process. But mass producing complicated plastic micro components, so small you can only see them with a microscope, has been difficult.

In the May 22 issue of the Proceedings of the National Academy of Sciences, University of Maryland chemistry professor John Fourkas and his group report the development of a new technique that promises to make the mass production of complex plastic microstructures a routine, one-step process.

“Molds for producing large objects are usually composed of two or more pieces that fit together,” says Fourkas, who has developed a number of groundbreaking techniques in micromachine technology. “That makes it possible to create components with extremely complicated shapes that include features such as holes -- the dust guard on a computer keyboard, for example. But when you try to use this same procedure to create microscopic objects, you encounter a number of problems, such as aligning the different parts of the molds.”

To solve the problem of mass producing plastic parts that are smaller than the diameter of a human hair, Fourkas’s team modified a technique known as microtransfer molding. In that process, a mold is made by curing an elastic substance called PDMS (a major component of bathtub caulk) over an original object, which is attached to a surface. The hardened mold is then removed and used to create copies.

“The problem with microtransfer molding comes when the original object contains closed loops,” says Fourkas. “Imagine that you want to mass produce a microscopic version of the Golden Gate Bridge. The bridge is anchored to the surface at its towers, forming a closed loop. Once the PDMS has been cured, the original bridge model will therefore be stuck inside of it.”

Up to now, the closed loop problem has been addressed by molding in layers. “This layer-by-layer technique can only be used to mold a limited range of structures, and it requires precise alignment of each mold,” says Fourkas. “We realized that we could take advantage of a property of PDMS that is usually viewed as a problem, which is that it likes to stick to itself.”

The Fourkas team created a thin wall of PDMS in the original structures, effectively removing any closed loops. “For instance, on the Golden Gate, we would create a thin wall underneath the entire length of the bridge model. That would make it possible to remove the mold from the original object,” says Fourkas. Then, once the mold is free, the wall region in the mold can be closed off by gentle pressure, making it possible to create copies of the bridge that do not contain a wall.

“One of the exciting things about this technique,” says Fourkas, “is that it vastly increases the range of microscopic structures that can be created in a single molding step. This represents an important step towards the mass production of micromachines made from plastic.”

The Fourkas team also recently invented a successful method to incorporate a broad range of materials, including metal, into micro structures fabricated by multiphoton absorption polymerization (MAP).


Story Source:

The above story is based on materials provided by University Of Maryland, College Park. Note: Materials may be edited for content and length.


Cite This Page:

University Of Maryland, College Park. "Team Invents Way To Mass Produce Microscopic Plastic Components." ScienceDaily. ScienceDaily, 5 June 2006. <www.sciencedaily.com/releases/2006/06/060605081758.htm>.
University Of Maryland, College Park. (2006, June 5). Team Invents Way To Mass Produce Microscopic Plastic Components. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2006/06/060605081758.htm
University Of Maryland, College Park. "Team Invents Way To Mass Produce Microscopic Plastic Components." ScienceDaily. www.sciencedaily.com/releases/2006/06/060605081758.htm (accessed April 16, 2014).

Share This



More Matter & Energy News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com
New York Auto Show Highlights Latest in Car Tech

New York Auto Show Highlights Latest in Car Tech

AP (Apr. 16, 2014) With more than 1 million visitors annually, the New York International Auto Show is one of the most important shows for the U.S. auto industry. This year's show featured the latest in high technology, and automotive bling. (April 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins