Featured Research

from universities, journals, and other organizations

New Study Suggests 'Planemos' May Spawn Planets And Moons

Date:
June 6, 2006
Source:
University of Toronto
Summary:
Forget our traditional ideas of where a planetary system forms -- new research led by a University of Toronto astronomer reveals that planetary nurseries can exist not only around stars but also around objects that are themselves not much heftier than Jupiter. It suggests that miniature versions of the solar system may circle objects that are some 100 times less massive than our sun.

VLT NACO J-band image, showing the 2M1207Ab system: the planetary companion is visible near the lower left rim of the brown dwarf, at a separation of 769 mas. North is up, East is left.
Credit: Image courtesy of European Southern Observatory

Forget our traditional ideas of where a planetary system forms — new research led by a University of Toronto astronomer reveals that planetary nurseries can exist not only around stars but also around objects that are themselves not much heftier than Jupiter. It suggests that miniature versions of the solar system may circle objects that are some 100 times less massive than our sun.

That’s the dramatic conclusion of two studies being presented today at the American Astronomical Society meeting in Calgary by Professor Ray Jayawardhana and his colleagues. The new findings show that objects only a few times more massive than Jupiter are born with disks of dust and gas, the raw material for planet making. Research done by Jayawardhana’s group and others in recent years had shown that disks are common around failed stars known as “brown dwarfs”. Now, they report, the same appears to be true for their even punier cousins, sometimes called planetary mass objects or “planemos.” These objects, discovered within the past five years, have masses similar to those of extra-solar planets, but they are not in orbit around stars — instead, they float freely through space.

“Now that we know of these planetary mass objects with their own little infant planetary systems, the definition of the word ‘planet’ has blurred even more,” says Jayawardhana, an associate professor of astronomy and astrophysics. “In a way, the new discoveries are not too surprising — after all, Jupiter must have been born with its own disk, out of which its bigger moons formed.”

Unlike Jupiter, however, these planemos are not circling stars. In the first study, Jayawardhana and Valentin Ivanov of the European Southern Observatory (ESO) in Chile used two of ESO's telescopes — the 8.2-metre Very Large Telescope and the 3.5-metre New Technology Telescope — to obtain optical spectra of six candidates identified recently by researchers at the University of Texas at Austin. Two of the six turned out to have masses between five to 10 times that of Jupiter while two others are a tad heftier, at 10 to 15 times Jupiter’s mass. All four of these objects are just a few million years old and are located in star-forming regions about 450 light-years from Earth. The planemos show infrared emission from dusty disks that may evolve into miniature planetary systems over time.

In the other study, Subhanjoy Mohanty (Harvard-Smithsonian Center for Astrophysics, CfA), Jayawardhana (UofT), Nuria Huelamo (ESO) and Eric Mamajek (CfA) used the Very Large Telescope to obtain infrared images and spectra of a planetary mass companion discovered two years ago around a young brown dwarf that is itself about 25 times the mass of Jupiter. The brown dwarf, dubbed 2M1207 for short and located 170 light-years from Earth, was known to be surrounded by a disk. Now, this team has found evidence for a disk around the eight-Jupiter-mass companion as well. Researchers think the pair probably formed together, just like a binary star system, instead of the companion forming in a disk around the brown dwarf. Moreover, Jayawardhana says, it is quite likely that smaller planets or moons could now form in the disk around each one.

Both sets of discoveries point to objects not much more massive than Jupiter forming the same way as stars like the sun, and perhaps being accompanied by their own retinues of small planets. “The diversity of worlds out there is truly remarkable,” Jayawardhana adds. “Nature often seems more prolific than our imagination.”


Story Source:

The above story is based on materials provided by University of Toronto. Note: Materials may be edited for content and length.


Cite This Page:

University of Toronto. "New Study Suggests 'Planemos' May Spawn Planets And Moons." ScienceDaily. ScienceDaily, 6 June 2006. <www.sciencedaily.com/releases/2006/06/060605190412.htm>.
University of Toronto. (2006, June 6). New Study Suggests 'Planemos' May Spawn Planets And Moons. ScienceDaily. Retrieved April 25, 2014 from www.sciencedaily.com/releases/2006/06/060605190412.htm
University of Toronto. "New Study Suggests 'Planemos' May Spawn Planets And Moons." ScienceDaily. www.sciencedaily.com/releases/2006/06/060605190412.htm (accessed April 25, 2014).

Share This



More Space & Time News

Friday, April 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Reuters - US Online Video (Apr. 23, 2014) A group of space explorers say the chance of a city-obliterating asteroid striking Earth is higher than scientists previously believed. Deborah Gembara reports. Video provided by Reuters
Powered by NewsLook.com
Nuclear-Level Asteroids Might Be More Common Than We Realize

Nuclear-Level Asteroids Might Be More Common Than We Realize

Newsy (Apr. 23, 2014) The B612 Foundation says asteroids strike Earth much more often than previously thought, and are hoping to build an early warning system. Video provided by Newsy
Powered by NewsLook.com
Two US Astronauts Step out on Spacewalk for ISS Repairs

Two US Astronauts Step out on Spacewalk for ISS Repairs

AFP (Apr. 23, 2014) Two US astronauts stepped out on a brief spacewalk Wednesday to install a backup computer at the International Space Station after one failed earlier this month. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
NASA Chief Outlines Plan for Human Mission to Mars

NASA Chief Outlines Plan for Human Mission to Mars

AFP (Apr. 22, 2014) NASA administrator Charles Bolden, speaking at the 'Human to Mars Summit' in Washington, says that learning more about the Red Planet can help answer the 'fundamental question' of 'life beyond Earth'. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins