Featured Research

from universities, journals, and other organizations

New Study Suggests 'Planemos' May Spawn Planets And Moons

Date:
June 6, 2006
Source:
University of Toronto
Summary:
Forget our traditional ideas of where a planetary system forms -- new research led by a University of Toronto astronomer reveals that planetary nurseries can exist not only around stars but also around objects that are themselves not much heftier than Jupiter. It suggests that miniature versions of the solar system may circle objects that are some 100 times less massive than our sun.

VLT NACO J-band image, showing the 2M1207Ab system: the planetary companion is visible near the lower left rim of the brown dwarf, at a separation of 769 mas. North is up, East is left.
Credit: Image courtesy of European Southern Observatory

Forget our traditional ideas of where a planetary system forms — new research led by a University of Toronto astronomer reveals that planetary nurseries can exist not only around stars but also around objects that are themselves not much heftier than Jupiter. It suggests that miniature versions of the solar system may circle objects that are some 100 times less massive than our sun.

Related Articles


That’s the dramatic conclusion of two studies being presented today at the American Astronomical Society meeting in Calgary by Professor Ray Jayawardhana and his colleagues. The new findings show that objects only a few times more massive than Jupiter are born with disks of dust and gas, the raw material for planet making. Research done by Jayawardhana’s group and others in recent years had shown that disks are common around failed stars known as “brown dwarfs”. Now, they report, the same appears to be true for their even punier cousins, sometimes called planetary mass objects or “planemos.” These objects, discovered within the past five years, have masses similar to those of extra-solar planets, but they are not in orbit around stars — instead, they float freely through space.

“Now that we know of these planetary mass objects with their own little infant planetary systems, the definition of the word ‘planet’ has blurred even more,” says Jayawardhana, an associate professor of astronomy and astrophysics. “In a way, the new discoveries are not too surprising — after all, Jupiter must have been born with its own disk, out of which its bigger moons formed.”

Unlike Jupiter, however, these planemos are not circling stars. In the first study, Jayawardhana and Valentin Ivanov of the European Southern Observatory (ESO) in Chile used two of ESO's telescopes — the 8.2-metre Very Large Telescope and the 3.5-metre New Technology Telescope — to obtain optical spectra of six candidates identified recently by researchers at the University of Texas at Austin. Two of the six turned out to have masses between five to 10 times that of Jupiter while two others are a tad heftier, at 10 to 15 times Jupiter’s mass. All four of these objects are just a few million years old and are located in star-forming regions about 450 light-years from Earth. The planemos show infrared emission from dusty disks that may evolve into miniature planetary systems over time.

In the other study, Subhanjoy Mohanty (Harvard-Smithsonian Center for Astrophysics, CfA), Jayawardhana (UofT), Nuria Huelamo (ESO) and Eric Mamajek (CfA) used the Very Large Telescope to obtain infrared images and spectra of a planetary mass companion discovered two years ago around a young brown dwarf that is itself about 25 times the mass of Jupiter. The brown dwarf, dubbed 2M1207 for short and located 170 light-years from Earth, was known to be surrounded by a disk. Now, this team has found evidence for a disk around the eight-Jupiter-mass companion as well. Researchers think the pair probably formed together, just like a binary star system, instead of the companion forming in a disk around the brown dwarf. Moreover, Jayawardhana says, it is quite likely that smaller planets or moons could now form in the disk around each one.

Both sets of discoveries point to objects not much more massive than Jupiter forming the same way as stars like the sun, and perhaps being accompanied by their own retinues of small planets. “The diversity of worlds out there is truly remarkable,” Jayawardhana adds. “Nature often seems more prolific than our imagination.”


Story Source:

The above story is based on materials provided by University of Toronto. Note: Materials may be edited for content and length.


Cite This Page:

University of Toronto. "New Study Suggests 'Planemos' May Spawn Planets And Moons." ScienceDaily. ScienceDaily, 6 June 2006. <www.sciencedaily.com/releases/2006/06/060605190412.htm>.
University of Toronto. (2006, June 6). New Study Suggests 'Planemos' May Spawn Planets And Moons. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2006/06/060605190412.htm
University of Toronto. "New Study Suggests 'Planemos' May Spawn Planets And Moons." ScienceDaily. www.sciencedaily.com/releases/2006/06/060605190412.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Space & Time News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Spokesman: 'NORAD Ready to Track Santa'

Spokesman: 'NORAD Ready to Track Santa'

AP (Dec. 19, 2014) Pentagon spokesman Rear Adm. John Kirby said that NORAD is ready to track Santa Claus as he delivers gifts next week. Speaking tongue-in-cheek, he said if Santa drops anything off his sleigh, "we've got destroyers out there to pick them up." (Dec. 19) Video provided by AP
Powered by NewsLook.com
NASA's Planet-Finding Kepler Mission Isn't Over After All

NASA's Planet-Finding Kepler Mission Isn't Over After All

Newsy (Dec. 18, 2014) More than a year after NASA declared the Kepler spacecraft broken beyond repair, scientists have figured out how to continue getting useful data. Video provided by Newsy
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Reuters - US Online Video (Dec. 16, 2014) NASA's Mars Curiosity rover finds methane in the Martian atmosphere and organic chemicals in the planet's soil, the latest hint that Mars was once suitable for microbial life. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins