Featured Research

from universities, journals, and other organizations

Breakthrough In Silicon Photonics Devices

Date:
June 28, 2006
Source:
University of California - Los Angeles
Summary:
Building on a series of recent breakthroughs in silicon photonics, researchers at the UCLA Henry Samueli School of Engineering and Applied Science have developed a novel approach to silicon devices that combines light amplification with a photovoltaic -- or solar panel -- effect.

UCLA Engineering professor Bahram Jalali has developed a novel approach to silicon devices that combines light amplification with a photovoltaic effect.
Credit: Image courtesy of University of California - Los Angeles

Building on a series of recent breakthroughs in silicon photonics, researchers at the UCLA Henry Samueli School of Engineering and Applied Science have developed a novel approach to silicon devices that combines light amplification with a photovoltaic – or solar panel – effect.

In a study to be presented today at the 2006 International Optical Amplifiers and Applications Conference in Vancouver, Canada, UCLA Engineering researchers report that not only can optical amplification in silicon be achieved with zero power consumption, but power can now be generated in the process.

The team's research shows that silicon Raman amplifiers possess nonlinear photovoltaic properties, a phenomenon related to power generation in solar cells. In 2004, the same group at UCLA Engineering demonstrated the first silicon laser, a device that took advantage of Raman amplification.

"After dominating the electronics industry for decades, silicon is now on the verge of becoming the material of choice for the photonics industry, the traditional stronghold of today's semiconductors," said Bahram Jalali, the UCLA Engineering professor who led researcher Sasan Fathpour and graduate student Kevin Tsia in making the recent discovery.

The amount of information that can be sent through an optical wire is directly related to the intensity of the light. In order to perform some of the key functions in optical networking – such as amplification, wavelength conversion, and optical switching – silicon must be illuminated with high intensity light to take advantage of its nonlinear properties. One example is the Raman effect, a phenomenon that occurs at high optical intensities and is behind many recent breakthroughs in silicon photonics, including the first optical amplifiers and lasers made in silicon.

The fundamental challenge in silicon photonics is the material stops being transparent at high optical intensities, making light unable to pass through.

"As light intensifies in silicon, it generates electrons through a process called two-photon-absorption. Excess electrons absorb the light and turn it into heat. Not only is the light and the data-carrying capacity lost, the phenomenon exacerbates one of the main obstacles in the semiconductor industry, which is excessive heating of chips. The optical loss also makes it all but impossible to create optical amplifiers and lasers that operate continuously," Jalali explained.

In previous attempts to deal with this challenge, a diode attached to the chip has been used to "vacuum" out the electrons which block light. This approach presents further problems, however, because the vacuum adds an additional watt of heat onto the chip – nearly a million times the power that a single transistor consumes in a digital circuit.

"In the past, two-photon absorption in silicon has resulted in significant loss for high power Raman amplifiers and lasers, reducing efficiency and necessitating complex mitigation schemes. UCLA Engineering's new development will enable recycling power that would otherwise be lost. In space and military laser systems, the impact of device efficiency on electrical power and thermal management is a prime consideration," said Dr. Robert R. Rice, senior scientist at Northrop Grumman Space Technology's Laser and Sensor Product Center.

The challenge of power dissipation in traditional silicon semiconductors already is so severe that it threatens to halt the continued advance of the technology described by Moore's law.

(Gordon Moore, one of Intel's founders, predicted in 1965 that innovative research would allow for a doubling of the number of transistors in a given space every year. In 1975, he adjusted this prediction to a doubling every two years.)

Because the UCLA Engineering team's discovery creates an advantage in heat dissipation, it represents a new perspective.

"The progress in silicon Raman lasers at UCLA Engineering by professor Bahram Jalali and his group has been very impressive, not only offering obvious benefits in photonic systems, but also opening up an entirely new approach," Rice added.

"This discovery is a step forward and makes it much more likely that the photonics and electronics will converge. If they do, many applications that silicon photonics has promised will come to fruition," Jalali said.

Silicon photonics technology has the potential to use the power of optical networking inside computers and to create new generation of miniaturized and low-cost photonic components, among other applications.

Jalali's research at UCLA Engineering has been funded by the U.S. Department of Defense through the Defense Advanced Research Project Agency (DARPA). The research was also co-sponsored by the Northrop Grumman Corporation.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Los Angeles. "Breakthrough In Silicon Photonics Devices." ScienceDaily. ScienceDaily, 28 June 2006. <www.sciencedaily.com/releases/2006/06/060628234005.htm>.
University of California - Los Angeles. (2006, June 28). Breakthrough In Silicon Photonics Devices. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2006/06/060628234005.htm
University of California - Los Angeles. "Breakthrough In Silicon Photonics Devices." ScienceDaily. www.sciencedaily.com/releases/2006/06/060628234005.htm (accessed April 24, 2014).

Share This



More Matter & Energy News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Next Stop America for France's TGV?

Next Stop America for France's TGV?

Reuters - Business Video Online (Apr. 24, 2014) General Electric keeps quiet on reports it's in talks to buy French turbine and train maker Alstom. Ivor Bennett reports on what could be an embarrassing rumour for the French government, with business-friendly reforms proving a hard sell. Video provided by Reuters
Powered by NewsLook.com
Raw: Obama Plays Soccer With Japanese Robot

Raw: Obama Plays Soccer With Japanese Robot

AP (Apr. 24, 2014) President Obama briefly played soccer with a robot during his visit to Japan on Thursday. The President has been emphasizing technology along with security concerns during his visit. (April 24) Video provided by AP
Powered by NewsLook.com
Obama Encourages Japanese Student-Scientists

Obama Encourages Japanese Student-Scientists

AP (Apr. 24, 2014) President Obama spoke with student innovators in Japan and urged them to take part in increased opportunities for student exchanges with the US. (April 24) Video provided by AP
Powered by NewsLook.com
UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins