Featured Research

from universities, journals, and other organizations

Protein-coated Dental Implants Could Improve Bone Regeneration

Date:
July 18, 2006
Source:
Medical College of Georgia
Summary:
Titanium dental implants coated with proteins that induce bone formation may be a key advancement in treating tooth loss due to gum disease, researchers say.

Dr. Ulf Wikesjö, a professor of periodontics in MCG's School of Dentistry displays digital images of protein-coated implants.
Credit: Image courtesy of Medical College of Georgia

Titanium dental implants coated with proteins that induce bone formation may be a key advancement in treating tooth loss due to gum disease, researchers say.

Related Articles


In laboratory tests, MCG researchers applied a protein onto implants that directs endogenous stem cells to become bone-forming cells. The result was a nearly complete regeneration of lost tissue, says Dr. Ulf Wikesjö, a professor of periodontics in MCG’s School of Dentistry.

Loss of teeth and bone is a common and devastating result of gum disease.

Dr. Wikesjö, who came to MCG this year from Temple University in Philadelphia, is researching wound-healing and tissue regeneration with a $1.4 million grant from Nobel Biocare, a leading manufacturer of dental implants and equipment.

Finding the key to improved regeneration is like piecing together a puzzle, Dr. Wikesjö says.

“For the past 20 years, there has been a quest to regenerate tissues around teeth that are lost due to periodontal disease,” he says. “I’ve looked at multiple approaches to achieve regeneration, including bone grafts, root conditioning and membrane devices for directed tissue growth, all resulting in some regeneration. Where we had to look was at the commonalities among these treatments.”

Dr. Wikesjö and his colleagues found that any regeneration requires two characteristics: a stable wound and space for the regenerated tissue to grow during the initial stages of healing.

“If these components are in place, regeneration of the tissues around the tooth may occur within a week or two,” he says. “After that, it’s a matter of the wound maturing – going through the various stages of healing that we’re already familiar with.”

By experimenting with treatments and discerning their effect on healing bone defects, they found some – including some in use today – that actually hinder tissue regeneration.

“Some biomaterials like hydroxyapatite particles, which are chemically similar to the mineral component of bone, may actually interfere with regeneration,” Dr. Wikesjö says. “They may not resorb quickly enough and may block the space for new tissue to grow into.”

The experiments helped researchers narrow down possible treatments to the use of proteins that directed stem cells to become bone-forming cells. Those proteins – called bone morpheonetic proteins – have already shown promise as a regeneration therapy for craniofacial reconstruction.

“None of us had any idea at the time how or if those proteins could be useful in treating tooth loss,” Dr. Wikesjö says.

To find out, researchers placed the proteins around teeth and implants in animal models.

Around teeth, the bone-forming cells grew into existing bone and eventually morphed into bone themselves. However, the root of the tooth was destroyed by the replacement bone. That process impeded regeneration of other essential tissues around the tooth.

Applying the protein to implants proved more beneficial.

“There was almost complete regeneration,” he says. “The generated bone bonded with the implant’s surface and, eventually, existing bone in the gums. That allowed for the regeneration of gum tissues.”

The next step is clinical trials of an implant coated with the proteins, which Dr. Wikesjö hopes to start this summer.

“There are still things we need to learn. In some cases, the protein may rapidly release from the implant, and other times, there appears to be a more gradual release,” Dr. Wikesjö says. “We need to find out what factors cause that. In the end, we may not need to use much protein to make the implant effective. Those are things we’re looking at now.”


Story Source:

The above story is based on materials provided by Medical College of Georgia. Note: Materials may be edited for content and length.


Cite This Page:

Medical College of Georgia. "Protein-coated Dental Implants Could Improve Bone Regeneration." ScienceDaily. ScienceDaily, 18 July 2006. <www.sciencedaily.com/releases/2006/07/060717220630.htm>.
Medical College of Georgia. (2006, July 18). Protein-coated Dental Implants Could Improve Bone Regeneration. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2006/07/060717220630.htm
Medical College of Georgia. "Protein-coated Dental Implants Could Improve Bone Regeneration." ScienceDaily. www.sciencedaily.com/releases/2006/07/060717220630.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Mistakes Should Serve a Lesson Says WHO

Ebola Mistakes Should Serve a Lesson Says WHO

AFP (Jan. 25, 2015) — The World Health Organization&apos;s chief on Sunday admitted the UN agency had been caught napping on Ebola, saying it should serve a lesson to avoid similar mistakes in future. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Disneyland Measles Outbreak Spreads To 5 States

Disneyland Measles Outbreak Spreads To 5 States

Newsy (Jan. 24, 2015) — Much of the Disneyland measles outbreak is being blamed on the anti-vaccination movement. The CDC encourages just about everyone get immunized. Video provided by Newsy
Powered by NewsLook.com
Growing Measles Outbreak Worries Calif. Parents

Growing Measles Outbreak Worries Calif. Parents

AP (Jan. 23, 2015) — Public health officials are rushing to contain a measles outbreak that has sickened 70 people across 6 states and Mexico. The AP&apos;s Raquel Maria Dillon has more. (Jan. 23) Video provided by AP
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) — A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins