Featured Research

from universities, journals, and other organizations

Discovery Of Agile Molecular Motors Could Aid In Treating Motor Neuron Diseases

Date:
July 18, 2006
Source:
University of Pennsylvania School of Medicine
Summary:
Over the last several months, the labs of Yale Goldman and Erika Holzbaur, from the University of Pennsylvania School of Medicine, have published a group of papers that, taken together, show proteins that function as molecular motors are surprisingly flexible and agile, able to navigate obstacles within the cell. These observations could lead to better ways to treat motor neuron diseases.

Over the last several months, the labs of Yale Goldman, MD, PhD, Director of the Pennsylvania Muscle Institute at the University of Pennsylvania School of Medicine, and Erika Holzbaur, PhD, Professor of Physiology, have published a group of papers that, taken together, show proteins that function as molecular motors are surprisingly flexible and agile, able to navigate obstacles within the cell. These observations could lead to better ways to treat motor neuron diseases.

Related Articles


Motor neuron diseases are a group of progressive neurological disorders that destroy motor neurons, the cells that control voluntary muscles for such activities as speaking, walking, breathing, and swallowing. When these neurons die, the muscle itself atrophies. A well-known motor neuron disease is amyotrophic lateral sclerosis (ALS, commonly known as Lou Gehrig's disease).

Using a specially-constructed microscope that allows researchers to observe the action of one macromolecule at a time, the team found that a protein motor is able to move back and forth along a microtubule – a molecular track – rather than in one direction, as previously thought. They report their findings in a recent issue of Nature Cell Biology. The proteins in this motor, dynein and dynactin, are the "long-distance truckers" of the cell: working together, they are responsible for transporting cellular cargo from the periphery of a cell toward its nucleus.

"My lab concentrates on the cellular and genetic aspects of the dynein-dynactin motor, while Yale's group delves into the mechanics of the motor itself," says Holzbaur. "We're deconstructing the system to understand how it all works in a living cell. In the lab, we start with a clean microtubule with a motor walking across it, but in the cell it's different: microtubules are packed together, with proteins studded along them, and cellular organelles and mitochondria are crammed in. The motor needs to maneuver around those 'obstructions.'" Goldman and Holzbaur suggest that the ability of the dynein-dynactin motor to move in both directions along the microtubule may provide the necessary maneuvering ability to allow for effective long distance transport.

Earlier this year, as reported in The Journal of Cell Biology, researchers in Holzbaur's lab found that a mutation in dynactin leads to degeneration of motor neurons, the hallmark of motor neuron disease. This mutation decreases the efficiency of the dynein-dynactin motor in "taking out the trash" of the cell, and thus leads to the accumulation of misfolded proteins in the cell, which may in turn lead to the degeneration of the neuron.

Scientists are now finding that many other molecular motors are remarkably flexible in their behavior. In several further papers published in the Proceedings of the National Academy of Sciences and The EMBO Journal, Goldman and colleagues at the University of Illinois found that a "local delivery" motor, termed myosin V, moves cargo with a variable path short distances along another type of cellular track called actin. This flexibility could help myosin V navigate crowded regions of the cell where the actin filaments criss-cross and where other cellular components would otherwise pose an impediment to motion. Defects in myosin V function also result in neurological defects.

Most of these molecular motors are associated with specific diseases or developmental defects, so understanding the puzzling aspects of their behavior in detail is necessary for building nanotechnological machines that, for example, could replace defective motors. "The ultimate goal is to find ways to treat motor neuron disease as well as other diseases that involve cellular motors and also construct nano-scale machines based on these biological motors," says Goldman.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Discovery Of Agile Molecular Motors Could Aid In Treating Motor Neuron Diseases." ScienceDaily. ScienceDaily, 18 July 2006. <www.sciencedaily.com/releases/2006/07/060718072914.htm>.
University of Pennsylvania School of Medicine. (2006, July 18). Discovery Of Agile Molecular Motors Could Aid In Treating Motor Neuron Diseases. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2006/07/060718072914.htm
University of Pennsylvania School of Medicine. "Discovery Of Agile Molecular Motors Could Aid In Treating Motor Neuron Diseases." ScienceDaily. www.sciencedaily.com/releases/2006/07/060718072914.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) — Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) — Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins