Featured Research

from universities, journals, and other organizations

Bubbles Go High-tech To Fight Tumors

Date:
July 23, 2006
Source:
University of Michigan
Summary:
Bubbles: You've bathed in them, popped them, endured bad song lyrics about them. Now, University of Michigan researchers hope to add a more sophisticated application to the list -- gas bubbles used like corks to block oxygen flow to tumors, or to deliver drugs.

The process of blocking blood flow to a tumor is called embolization, and using gas bubbles is a new technique in embolotherapy. What makes it so promising is that the technique allows doctors to control exactly where the bubbles are formed, so blockage of blood flow to surrounding tissue is minimal, said Joseph Bull, assistant professor of biomedical engineering at U-M.
Credit: Image courtesy of University of Michigan

Bubbles: You’ve bathed in them, popped them, endured bad song lyrics about them. Now, University of Michigan researchers hope to add a more sophisticated application to the list—gas bubbles used like corks to block oxygen flow to tumors, or to deliver drugs.

Related Articles


The process of blocking blood flow to a tumor is called embolization, and using gas bubbles is a new technique in embolotherapy. What makes it so promising is that the technique allows doctors to control exactly where the bubbles are formed, so blockage of blood flow to surrounding tissue is minimal, said Joseph Bull, assistant professor of biomedical engineering at U-M.

The research of Bull and collaborator Brian Fowlkes, an associate professor in the Department of Radiology in the U-M Medical School, is currently focused on the fundamental vaporization and transport topics that must first be understood in order to translate this developmental technique to the clinic.

In traditional embolotherapy techniques, the so-called cork that doctors use to block the blood flow—called an emboli—is solid. For instance, it could be a blood clot or a gel of some kind. A major difficulty with these approaches is restricting the emboli to the tumor to minimize destruction of surrounding tissue, without extremely invasive procedures, Bull said. The emboli must be delivered by a catheter placed into the body at the tumor site.

Gas bubbles, on the other hand, allow very precise delivery because their formation can be controlled and directed from the outside, by a focused high intensity ultrasound.

This envisioned technique is actually a two-step process, Bull said. First, a stream of encapsulated superheated perfluorocarbon liquid droplets goes into the body by way of an intravenous injection. The droplets are small enough that they don’t lodge in vessels. Doctors image the droplets with standard ultrasound, and once the droplets reach their destination, scientists hit them with high intensity ultrasound. The ultrasound acts like a pin popping a water balloon. After the shell pops, the perfluorocarbon expands into a gas bubble that is approximately 125 times larger in volume than the droplet.

"If a bubble remained spherical its diameter would be much larger than that of the vessel," Bull said. "So it deforms into a long sausage-shaped bubble that lodges in the vessel like a cork. Two or three doses of bubbles will occlude most of the (blood) flow." Without blood flow, the tumor dies.

Because the bubble is so big, it’s critical to get the right vessel in order not to damage it.

"How flexible the vessel is plays a very important role in where you do this," Bull said. That is the subject of a paper coming out on gas embolotherapy in the August issue of the Journal of Biomechanical Engineering.

Bull’s post doctoral student Tao Ye was a co-author on the paper.

The technique could be very valuable in treating certain cancers, such as renal cancer and hepatocellular carcinoma, the most common form of liver cancer, causing about 1,250,000 deaths annually. However, cirrhosis of the liver makes it difficult to treat by the conventional method of removing the tumor and surrounding tissue, because so much of the liver is already damaged. This cancer has a high mortality rate.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University of Michigan. "Bubbles Go High-tech To Fight Tumors." ScienceDaily. ScienceDaily, 23 July 2006. <www.sciencedaily.com/releases/2006/07/060721195718.htm>.
University of Michigan. (2006, July 23). Bubbles Go High-tech To Fight Tumors. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2006/07/060721195718.htm
University of Michigan. "Bubbles Go High-tech To Fight Tumors." ScienceDaily. www.sciencedaily.com/releases/2006/07/060721195718.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins