Featured Research

from universities, journals, and other organizations

Stimulation Of The Semicircular Canals Can Artificially Control Human Walking And Balance

Date:
August 8, 2006
Source:
Cell Press
Summary:
By applying electrical currents across the heads of people while they walk, researchers have improved our understanding of how our vestibular system helps us maintain upright posture; at the same time, the researchers found that the stimulus could be applied in a way that allowed a person who was walking straight ahead to be steered by "remote control" without her balance being affected.

By applying electrical currents across the heads of people while they walk, researchers have improved our understanding of how our vestibular system helps us maintain upright posture; at the same time, the researchers found that the stimulus could be applied in a way that allowed a person who was walking straight ahead to be steered by "remote control" without her balance being affected. The findings are reported by Richard Fitzpatrick and Jane E. Butler of the Prince of Wales Medical Research Institute and the University of New South Wales, Australia, and Brian L. Day of University College London in the August 8th issue of Current Biology, published by Cell Press.

Related Articles


To investigate how the body's ability to sense head movements can contribute to balance control and guidance control--two critical aspects of bipedal locomotion--the researchers stimulated nerves that normally communicate signals from the so-called semicircular canals, structures that are part of the vestibular system that assists in orientation and balance. The researchers found that artificial stimulation of semiciruclar canal nerves afforded "remote control" that was accurate enough to keep subjects on pathways and avoiding obstacles while walking blindfolded through botanical gardens. The researchers also found that with a subject's head in another position, exactly the same stimulus could be used to disturb upright balance, causing the subject to lean in one direction or the other, but without having any effect on steering his walking.

Known as bipedalism, our habitual upright posture is unique in the animal kingdom and has arisen through specific complementary adaptations of the body and brain. It has been believed that the key to human balance has come from a precise sense of--and ability to align the body to--the direction of gravity.

However, the semicircular canals that the researchers stimulated to control walking and balance detect rotational movements of the head, not the direction of gravity. These findings therefore show that sensing movement is crucial for our upright posture.

The findings support interpretations made from fossil evidence of an evolutionary change in the development of the human semicircular canals. These evolutionary changes would allow for enhanced movement detection, and therefore also indicate that that controlled movement, rather than alignment to gravity, has been important for the development of modern human bipedalism.

This new work has important implications for understanding how the brain processes sensory signals.

According to the researchers, the findings indicate that from the single sensory organ that signals the movement of the head, the brain makes instant complex "mathematical" calculations to discard the parts not important to balance or steering, such as the movements we make when looking around, and then transforms the remaining signal into two components. One component is used to control steering, and the other to control balance. In a more practical view, this ability to produce illusions of movement, and then steer and balance the body by external control, leads the researchers to expect that stimulation techniques developed from the approach used in the new study will lead the way to diagnostic, therapeutic, and virtual-reality applications.

The researchers include Richard C. Fitzpatrick and Jane E. Butler of Prince of Wales Medical Research Institute and University of New South Wales in Sydney, Australia; Brian L. Day of University College London in London, United Kingdom.

This study was supported by the National Health and Medical Research Council of Australia and the Medical Research Council of Great Britain.

Fitzpatrick et al.: "Resolving Head Rotation for Human Bipedalism." Publishing in Current Biology 16, 1509--1514, August 8, 2006, DOI 10.1016/j.cub.2006.05.063 www.current-biology.com


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Stimulation Of The Semicircular Canals Can Artificially Control Human Walking And Balance." ScienceDaily. ScienceDaily, 8 August 2006. <www.sciencedaily.com/releases/2006/08/060807122110.htm>.
Cell Press. (2006, August 8). Stimulation Of The Semicircular Canals Can Artificially Control Human Walking And Balance. ScienceDaily. Retrieved March 27, 2015 from www.sciencedaily.com/releases/2006/08/060807122110.htm
Cell Press. "Stimulation Of The Semicircular Canals Can Artificially Control Human Walking And Balance." ScienceDaily. www.sciencedaily.com/releases/2006/08/060807122110.htm (accessed March 27, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Friday, March 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

AAA: Distracted Driving a Serious Teen Problem

AAA: Distracted Driving a Serious Teen Problem

AP (Mar. 25, 2015) While distracted driving is not a new problem for teens, new research from the AAA Foundation for Traffic Safety says it&apos;s much more serious than previously thought. (March 25) Video provided by AP
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Many Don't Know They Have Alzheimer's, But Their Doctors Do

Many Don't Know They Have Alzheimer's, But Their Doctors Do

Newsy (Mar. 24, 2015) According to a new study by the Alzheimer&apos;s Association, more than half of those who have the degenerative brain disease aren&apos;t told by their doctors. Video provided by Newsy
Powered by NewsLook.com
A Quick 45-Minute Nap Can Improve Your Memory

A Quick 45-Minute Nap Can Improve Your Memory

Newsy (Mar. 23, 2015) Researchers found those who napped for 45 minutes to an hour before being tested on information recalled it five times better than those who didn&apos;t. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins