Featured Research

from universities, journals, and other organizations

Mixing, Then Un-mixing Oil And Water 'On Command' Could Solve Oil Recovery And Clean-up Problems

Date:
August 17, 2006
Source:
Queen's University
Summary:
Queen's University researchers have devised a "green chemistry" solution to one of the oil industry's biggest problems -- in a cost-effective way.

Queen's University researchers have devised a "green chemistry" solution to one of the oil industry's biggest problems -- in a cost-effective way.

Their findings will be published in the international journal Science on Friday August 18.

The study addresses the recurring problem of separating oil and water mixtures, and targets diverse applications including cleaning up oil spills, and extracting oil deposits from tar sands and reservoirs. Other potential beneficiaries are plastics manufacturers, chemical and pharmaceutical companies, mining companies and makers of cleaning products.

The new process can be used whenever industry requires an emulsion (the mixture of two liquids in which droplets of one are suspended evenly throughout the other), explains lead researcher and Queen's Chemistry Professor Philip Jessop. This might occur when cleaning spills, extracting oil from the ground, de-greasing metal equipment or metal surfaces, and manufacturing chemical products such as plastics.

Since oil and water don't normally mix, it's necessary to add a "surfactant" (surface active agent) in the layer between them before you can create an emulsion. "The problem is that in many situations, you later want the water and oil to separate again," he continues. But of the 'switchable' surfactants known so far, one is very expensive and contains metals, another is extremely toxic, and the third type is activated by light -- which doesn't work well with opaque emulsions.

Old-fashioned soap can be made to "switch" but that requires large amounts of acid to be added, which is not desirable, says Dr. Jessop, Canada Research Chair in Green Chemistry. The surfactant developed by the Queen's team is also completely reversible and does not require metals, acid, or light. Exposure to carbon dioxide (CO2) activates it, while bubbling air through the liquid turns it off again. CO2 and air were chosen because they are cheap, non-toxic and environmentally benign: the CO2 can be recycled material from power plants.

"You can do this over and over, timing it for exactly when you want the switch to occur," Dr. Jessop notes. And when the surfactant is turned off, causing oil and water to separate, the now-clean water may be returned to its source or recycled.

The new surfactant builds on Dr. Jessop's discovery last year of "switchable solvents" that change their properties when alternately exposed to carbon dioxide and nitrogen, making it possible to re-use the same solvent for multiple steps in a chemical process.

"Right now there are big separation problems causing enormous headaches in the oil industry," says Dr. Jessop. "If 'green chemistry' can solve these problems, then the environment benefits and companies profit financially as well. It's very much a win-win situation."

Also on the team from Queen's are Chemistry Department graduate student Yingxin Liu and Chemical Engineering Professor Michael Cunningham, and from the Georgia Institute of Technology Drs. Charles Eckert and Charles Liotta.

Green chemistry refers to the development of chemical products and processes that reduce or eliminate the use and generation of hazardous substances. Rather than focusing on the natural environment and pollutant chemicals in nature, this type of chemistry seeks to reduce and prevent pollution at its source.


Story Source:

The above story is based on materials provided by Queen's University. Note: Materials may be edited for content and length.


Cite This Page:

Queen's University. "Mixing, Then Un-mixing Oil And Water 'On Command' Could Solve Oil Recovery And Clean-up Problems." ScienceDaily. ScienceDaily, 17 August 2006. <www.sciencedaily.com/releases/2006/08/060817211316.htm>.
Queen's University. (2006, August 17). Mixing, Then Un-mixing Oil And Water 'On Command' Could Solve Oil Recovery And Clean-up Problems. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2006/08/060817211316.htm
Queen's University. "Mixing, Then Un-mixing Oil And Water 'On Command' Could Solve Oil Recovery And Clean-up Problems." ScienceDaily. www.sciencedaily.com/releases/2006/08/060817211316.htm (accessed September 20, 2014).

Share This



More Earth & Climate News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com
Raw: Wildfires in CA Burn Forest Asunder

Raw: Wildfires in CA Burn Forest Asunder

AP (Sep. 18, 2014) An out-of-control Northern California wildfire has nearly 2,800 people from their homes as it continues to grow, authorities said Thursday. Authorities said a man has been arrested on suspicion of arson for starting the fire on Saturday. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Raw: Elephant Undergoes Surgery in Tbilisi Zoo

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

AP (Sep. 18, 2014) Grand the elephant has successfully undergone surgery to remove a portion of infected tusk at Tbilisi Zoo in Georgia. British veterinary surgeons used an electric drill to extract the infected piece. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins