Featured Research

from universities, journals, and other organizations

Enzyme Builds Neurotransmitters Via Newly Discovered Pathway

Date:
September 22, 2006
Source:
Scripps Research Institute
Summary:
Scientists at the Scripps Research Institute have uncovered a previously unknown function of an enzyme that appears to play a primary role in the biosynthesis of a large class of lipids that help modulate diverse physiological processes, including anxiety, inflammation, learning and memory and appetite.

Scientists at the Scripps Research Institute have uncovered a previously unknown function of an enzyme that appears to play a primary role in the biosynthesis of a large class of lipids that help modulate diverse physiological processes, including anxiety, inflammation, learning and memory and appetite.

Related Articles


The study, which was directed by Scripps Research Professor Benjamin Cravatt, Ph.D., is being published in the September 8 issue of The Journal of Biological Chemistry.

The new study describes a pathway-different than the one previously suggested-for the biosynthesis of neurotransmitter lipids, N-acyl ethanolamines (NAEs), which include the endogenous cannabinoid ("endocannabinoid") anandamide. The high activity of the enzyme a/b hydrolase4 (Abh4) in areas such as the central nervous system suggests that the pathway makes a "potentially major contribution" to endocannabinoid signaling.

Endocannabinoids are naturally produced substances similar to the active ingredient D9-tetrahydrocannabinol (THC) in marijuana. Cannabinoid receptors were first discovered in 1988; the first endocannabinoid, anandamide, which shares some of the pharmacologic properties of THC, was identified in 1992.

Other research has shown that the endogenous cannabinoid system helps control food intake, among other critical processes, by acting on cannabinoid receptors in the central nervous system. The system drives consumption of fat and calorie-rich foods and the amount of fat stored or expended and plays a significant role in energy homeostasis.

"At least one cannabinoid receptor antagonist is on the verge of approval for the treatment of obesity-metabolic disorders," said Cravatt. "Enzymes involved in endocannabinoid biosynthesis, such as the one highlighted in our study, can be viewed as complementary drug targets. One potential advantage of this approach is that it may prove more selective than a receptor antagonist. By inhibiting enzymes such as Abh4, we may be able to disrupt the activity of a single class of endocannabinoids, rather than all of them."

In the new study, the researchers provide biochemical evidence of an alternative pathway for NAE biosynthesis in vivo and demonstrate that these new routes are especially important for the creation of a number of NAEs, including anandamide. The researchers also isolated and identified the enzyme Abh4 by combining traditional protein purification and functional proteomic technologies, concluding that Abh4 "displayed multiple properties" that would be expected of an enzyme involved in NAE biosynthesis.

However, the authors of the study noted, the unique contribution that this Abh4-mediated route makes to the production of NAEs in vivo is yet to be determined and will require "the generation of genetic or pharmacological tools that selectively [interrupt] this pathway."

"The continued pursuit of additional enzymes involved in NAE biosynthesis should further enrich our understanding of the complex metabolic network that supports the endocannabinoid/NAE system in vivo," Cravatt said. "From a therapeutic perspective, any of these enzymes could represent an attractive drug target for a range of human disorders in which disruption of endocannabinoid signaling by cannabinoid receptor antagonists has proven beneficial."

Gabriel Simon of Scripps Research was the other author of the study, titled "Endocannabinoid biosynthesis proceeding through Glycerophospho-N-Acyl ethanolamine and a role for a/b hydrolase 4 in this pathway."

The research was supported by the National Institutes of Health, the Skaggs Institute for Chemical Biology, and the Helen L. Dorris Institute for the Study of Neurological and Psychiatric Disorders of Children and Adolescents.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Cite This Page:

Scripps Research Institute. "Enzyme Builds Neurotransmitters Via Newly Discovered Pathway." ScienceDaily. ScienceDaily, 22 September 2006. <www.sciencedaily.com/releases/2006/09/060915203730.htm>.
Scripps Research Institute. (2006, September 22). Enzyme Builds Neurotransmitters Via Newly Discovered Pathway. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2006/09/060915203730.htm
Scripps Research Institute. "Enzyme Builds Neurotransmitters Via Newly Discovered Pathway." ScienceDaily. www.sciencedaily.com/releases/2006/09/060915203730.htm (accessed October 26, 2014).

Share This



More Mind & Brain News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Academic Scandal Shocks UNC

Academic Scandal Shocks UNC

AP (Oct. 23, 2014) A scandal involving bogus classes and inflated grades at the University of North Carolina was bigger than previously reported, a new investigation found. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Working Mother Getaway: Beaches Turks & Caicos

Working Mother Getaway: Beaches Turks & Caicos

Working Mother (Oct. 22, 2014) Feast your eyes on this gorgeous family-friendly resort. Video provided by Working Mother
Powered by NewsLook.com
What Your Favorite Color Says About You

What Your Favorite Color Says About You

Buzz60 (Oct. 22, 2014) We all have one color we love to wear, and believe it or not, your color preference may reveal some of your character traits. In celebration of National Color Day, Krystin Goodwin (@kyrstingoodwin) highlights what your favorite colors may say about you. Video provided by Buzz60
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins