Featured Research

from universities, journals, and other organizations

A New Way To Treat Colon Cancer?

Date:
October 11, 2006
Source:
University of Utah Health Sciences Center
Summary:
Researchers at University of Utah's Huntsman Cancer Institute have discovered a new target for possible future colon cancer treatments -- a molecule that is implicated in 85 percent of colon cancer cases.

Researchers at University of Utah's Huntsman Cancer Institute have discovered a new target for possible future colon cancer treatments -- a molecule that is implicated in 85 percent of colon cancer cases.

These findings were published online Oct. 6, 2006, in the Journal of Biological Chemistry.

By knocking out -- that is, genetically disabling -- a molecule called C-Terminal Binding Protein (CTBP) researchers were able to rescue zebrafish from the effects of a mutation in the adenomatous polyposis coli (APC) gene.

In humans, mutations in this gene long have been known to initiate a series of events that cause colon polyps, which eventually become cancerous. APC mutations play a role in 85 percent of colon cancers. The new findings mean CTBP also is involved in that proportion of colon cancers.

In zebrafish, APC mutations keep the intestine from developing properly. "In essence, knocking out CTPB promotes normal development of the intestine in zebrafish carrying an APC mutation," says David A. Jones, a University of Utah associate professor of oncological sciences and leader of the study.

In normal cells of both humans and zebrafish, the APC gene controls the amount of CTBP present by marking it for destruction. In tumor cells with mutated APC, CTPB is not destroyed; instead it accumulates in the cell.

One function of CTBP is to turn off the process that converts vitamin A into retinoic acid in the cell. Retinoic acid is essential in cell differentiation -- the function that determines what type of cell forms and how long it lives. This study observed that in both zebrafish and human tissues with APC mutations, there are high CTBP levels and low capability to produce retinoic acid. In APC-mutated tissues in which CTBP had been "knocked out," retinoic acid production was restored.

Earlier studies in Jones' lab showed that lack of retinoic acid caused zebrafish intestines to form incorrectly, and that adding retinoic acid corrected the problems.

"Knocking out CTBP does exactly the same thing, and the logical conclusion is that it's because CTBP controls retinoic acid production," says Jones. "Since CTBP is a completely new target, we must now look for potential chemical agents that would work to block its actions. That could take three to five years."

Other Huntsman Cancer Institute researchers participating in this study include Lincoln D. Nadauld, Reid Phelps, Brent C. Moore, Annie Eisinger, Imelda T. Sandoval, Stephanie Chidester, Peter W. Peterson, Elizabeth J. Manos, Bradford Sklow, and Randall W. Burt.

Funding for this study was provided by the National Cancer Institute and the Huntsman Cancer Foundation.

About colorectal cancer

Colorectal cancer is the second leading cause of cancer deaths in the United States. In 2006, the American Cancer Society estimates that 106,680 cases of colorectal cancer will be diagnosed in the nation, with 700 cases in Utah. Colorectal cancer is the third most common cancer in the United States and Utah.

About Huntsman Cancer Institute

Huntsman Cancer Institute's mission is to understand cancer from its beginnings, to use that knowledge in the creation and improvement of cancer treatments, to relieve the suffering of cancer patients, and to provide education about cancer risk, prevention, and care. HCI is a National Cancer Institute-designated cancer center, which means that it meets the highest national standards for cancer care and research and receives support for its scientific endeavors. HCI is also a member of the National Comprehensive Cancer Network, a nonprofit alliance of the world's leading cancer centers, dedicated to improving the quality and effectiveness of care provided to patients with cancer.


Story Source:

The above story is based on materials provided by University of Utah Health Sciences Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Utah Health Sciences Center. "A New Way To Treat Colon Cancer?." ScienceDaily. ScienceDaily, 11 October 2006. <www.sciencedaily.com/releases/2006/10/061010022431.htm>.
University of Utah Health Sciences Center. (2006, October 11). A New Way To Treat Colon Cancer?. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2006/10/061010022431.htm
University of Utah Health Sciences Center. "A New Way To Treat Colon Cancer?." ScienceDaily. www.sciencedaily.com/releases/2006/10/061010022431.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins