Featured Research

from universities, journals, and other organizations

Optical Mapping Reveals More Than Traditional DNA Sequencing

Date:
October 11, 2006
Source:
University of Southern California
Summary:
Optical mapping is a powerful genetic identification tool that so far has been limited to lower organisms. Now a USC-led team of computational biologists has made the method practical for human genomes.

The research was conducted by a student-led group from the laboratory of University Professor Michael Waterman.
Credit: Photo Irene Fertik

A mathematical discovery has extended the reach of a novel genome mapping method to humans, potentially giving cancer biology a faster and more cost-effective tool than traditional DNA sequencing.

A student-led group from the laboratory of Michael Waterman, USC University Professor in molecular and computational biology, has developed an algorithm to handle the massive amounts of data created by a restriction mapping technology known as "optical mapping." Restriction maps provide coordinates on chromosomes analogous to mile markers on freeways.

Lead author Anton Valouev, a recent graduate of Waterman's lab and now a postdoctoral fellow at Stanford University, said the algorithm makes it possible to optically map the human genome.

"It carries tremendous benefits for medical applications, specifically for finding genomic abnormalities," he said.

The algorithm appears in this week's PNAS Early Edition.

Optical mapping was developed at New York University in the late 1990s by David Schwartz, now a professor of chemistry and genetics at the University of Wisconsin-Madison. Schwartz and a collaborator at Wisconsin, Shiguo Zhou, co-authored the PNAS paper.

The power of optical mapping lies in its ability to reveal the size and large-scale structure of a genome. The method uses fluorescence microscopy to image individual DNA molecules that have been divided into orderly fragments by so-called restriction enzymes.

By imaging large numbers of an organism's DNA molecules, optical mapping can produce a map of its genome at a relatively low cost.

An optical map lacks the minute detail of a genetic sequence, but it makes up for that shortcoming in other ways, said Philip Green, a professor of genome sciences at the University of Washington who edited the PNAS paper.

Geneticists often say that humans have 99.9 percent of their DNA in common. But, Green said, "individuals occasionally have big differences in their chromosome structure. You sometimes find regions where there are larger changes."

Such changes could include wholesale deletions of chunks of the genome or additions of extra copies. Cancer genomes, in particular, mutate rapidly and contain frequent abnormalities.

"That's something that's very hard to detect" by conventional sequencing, Green said, adding that sequencing can simply miss part of a genome.

Optical mapping, by contrast, can estimate the absolute length of a genome and quickly detect differences in length and structure between two genomes. Comparing optical maps of healthy and diseased genomes can guide researchers to crucial mutations.

Though he called optical mapping "potentially very powerful," Green added that it requires such a high level of expertise that only a couple of laboratories in the world use the method.

The Waterman group's algorithm may encourage others to take a second look.

Funding for the group's research came from the National Institutes of Health, the National Science Foundation and the Preuss Foundation.


Story Source:

The above story is based on materials provided by University of Southern California. Note: Materials may be edited for content and length.


Cite This Page:

University of Southern California. "Optical Mapping Reveals More Than Traditional DNA Sequencing." ScienceDaily. ScienceDaily, 11 October 2006. <www.sciencedaily.com/releases/2006/10/061010022448.htm>.
University of Southern California. (2006, October 11). Optical Mapping Reveals More Than Traditional DNA Sequencing. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2006/10/061010022448.htm
University of Southern California. "Optical Mapping Reveals More Than Traditional DNA Sequencing." ScienceDaily. www.sciencedaily.com/releases/2006/10/061010022448.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins