Featured Research

from universities, journals, and other organizations

Breakthrough May Help Industry Create More Powerful Computer Chips

Date:
October 12, 2006
Source:
University of Central Florida
Summary:
A University of Central Florida research team has made a substantial inroad toward establishing extreme ultraviolet light (EUV) as a primary power source for manufacturing the next generation of computer chips.

Professor Martin Richardson’s EUV Photonics Laboratory, part of a broader effort on high-power laser applications that he runs, is focused on developing the EUV light source and advanced X-ray optical systems.
Credit: Photo : Chad Binette

A University of Central Florida research team has made a substantial inroad toward establishing extreme ultraviolet light (EUV) as a primary power source for manufacturing the next generation of computer chips.

The team, led by Martin Richardson, university trustee chair and UCF's Northrop Grumman professor of X-Ray optics, successfully demonstrated for the first time an EUV light source with 30 times the power of previous recorded attempts -- enough to power the stepper machines used to reproduce detailed circuitry images onto computer chips.

The successful use of EUV light for this purpose marks a milestone in an industry-wide effort to create the most efficient and cost-effective power source for the next generation of chip production. Chips are now manufactured using longer-wavelength ultraviolet light sources.

The UCF breakthrough came as a result of a collaboration between Richardson and Powerlase Ltd., a company based in England. The company provided UCF with a powerful Starlase laser to combine with the specialized laser plasma source technology that the UCF team has developed. The unique technology combines the high conversion of laser light to EUV and effectively eliminates the neutral and charged particles that are associated with existing EUV plasma sources. If allowed to stream freely away from the source, those particles can harm the expensive optics used in EUV steppers.

The short wavelength, only 13.5 nanometers, and an uncontaminated light source are critical components for the stepper's ability to project ever-smaller circuitry onto chips.

In order to keep up with Moore's Law, a computer industry dictum written in 1965 that estimates a doubling of the number of transistors on a computer chip about every two years, significant technological changes have to be made in chip production, Richardson said.

"We must use a light source with a wavelength short enough to allow the minimum feature size on a chip to go down to possibly as low as 12 nanometers," Richardson said. The current industry standard for semiconductor production is approximately 65 nanometers. A nanometer is one-billionth of a meter; a sheet of paper is about 100,000 nanometers thick.

Richardson's EUV Photonics Laboratory, part of a broader effort on high-power laser applications that he runs, is focused on developing the EUV light source and advanced X-ray optical systems. Team members include graduate research assistant Kazu Takenoshita; graduate students Tobias Schmid, Simi George, Robert Bernath and Jose Cunado; and engineer Somak Teerawattanasook.

Research efforts have been aided by a 2004 donation of intellectual property and equipment valued in excess of $22 million to UCF's College of Optics and Photonics to support Richardson's EUV program.

Continued collaboration with industry groups such as Powerlase is allowing the work to advance exponentially, Richardson said.

"We are very excited to be able to collaborate with world-leading academic experts in the field of extreme ultraviolet sources," said Samir Ellwi, Powerlase's vice president of strategic innovations. "Our high-power, high-repetition short pulse Starlase laser is an ideal driver for the laser produced plasma EUV source."

Richardson will be presenting results of his collaboration with Powerlase at the 5th International EUV Lithography Symposium Oct. 15 to 19 in Barcelona, Spain.


Story Source:

The above story is based on materials provided by University of Central Florida. Note: Materials may be edited for content and length.


Cite This Page:

University of Central Florida. "Breakthrough May Help Industry Create More Powerful Computer Chips." ScienceDaily. ScienceDaily, 12 October 2006. <www.sciencedaily.com/releases/2006/10/061012090944.htm>.
University of Central Florida. (2006, October 12). Breakthrough May Help Industry Create More Powerful Computer Chips. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2006/10/061012090944.htm
University of Central Florida. "Breakthrough May Help Industry Create More Powerful Computer Chips." ScienceDaily. www.sciencedaily.com/releases/2006/10/061012090944.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins