Featured Research

from universities, journals, and other organizations

Fossilized Liquid Assembly: Nanomaterials Research Tool

Date:
October 18, 2006
Source:
National Institute of Standards and Technology
Summary:
From a butterfly's iridescent wing to a gecko's sticky foot, nature derives extraordinary properties from ordinary materials like wax and keratin. Its secret is hierarchical topology -- macroscale structures assembled from microscale components of varying sizes. Borrowing a page from nature's playbook, researchers at NIST have developed a novel platform for the self-assembly of experimental hierarchical surfaces in a fluid. Their work offers diverse industries a new way to generate and measure self-assembly at the nanoscale.

Optical microscope image (lower plane) shows spheres at mutiple size scales self-arranging in complex "super-assemblies" in NIST's hierarchical topology modeling system. Atomic-force microscopy (detail) shows the textured surface formed by the spheres.
Credit: NIST

From a butterfly's iridescent wing to a gecko's sticky foot, nature derives extraordinary properties from ordinary materials like wax and keratin. Its secret is hierarchical topology: macroscale structures assembled from microscale components of varying sizes. Borrowing a page from nature's playbook, researchers at the National Institute of Standards and Technology (NIST) have developed a novel platform for the self-assembly of experimental hierarchical surfaces in a fluid. Their work offers diverse industries a new way to generate and measure self-assembly at the nano-scale.

A butterfly's wings shimmer because light plays upon tiny rows of scales, like tiles on a Spanish roof. The gecko sticks to surfaces because its feet are patterned with microscopic hairs, each hair tipped with hundreds of even tinier projections. Beads of water roll off the lotus's leaf because its surface is streaked with microscopic peaks, each with a finer structure, that makes the surface "super hydrophobic." These enhanced properties--other possibilities include super adhesion and low friction--have attracted the attention of design engineers for applications from bioengineered tissues to photonic crystals to submarines that slice through water with minimal drag.

Creating these topologically complex, self-assembled surfaces for study has been a challenge. If the components are mixed on a surface, that substrate affects how they assemble; if mixed in a solvent and dried, the drying process similarly distorts the results. In a recent paper*, the NIST team detailed a much simpler and faster system they dubbed "fossilized liquid assembly" to create experimental models of hierarchical topologies in which the components are allowed to mix and assemble freely in a fluid, and then quickly "frozen" in place for study. The key is the use of solutions of water and a special monomer that polymerizes--links together--when exposed to ultraviolet light. Like an oil-water mixture, the fluid forms liquid interfaces that can be manipulated to create a desired hierarchical structure and then suddenly solidified with a burst of UV light.

Lead researcher and physicist Alamgir Karim estimates that it takes about five minutes to make a sample of self-assembling particles using NIST's approach. Other methods, he notes, not only are more complicated and costly, but also do not allow the structures to form as freely. With the new technique, engineers also will be able to build complex dynamic structures and freeze them into solid form, studying self-assembly under the microscope. "How do you take a snapshot of shampoo in action?" asks physicist Jason Benkoski, first author of the paper. "We can now directly observe these small, mobile, delicate structures."

The researchers also are using the new platform to better understand the fundamental physics behind the formation of hierarchical topology, studying, for example how different forces dominate at different scales of length. Looking ahead, the NIST team plans to build on this study, expanding the technology as a 3D imaging platform.

The work was supported by NIST and a National Research Council Fellowship.

* J.J. Benkoski, H. Hu, and A. Karim. Generation of hierarchical topologies from photocrosslinkable, particle-stabilized emulsions. Macromolecular Rapid Communications. Aug. 2, 2006


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Fossilized Liquid Assembly: Nanomaterials Research Tool." ScienceDaily. ScienceDaily, 18 October 2006. <www.sciencedaily.com/releases/2006/10/061012184208.htm>.
National Institute of Standards and Technology. (2006, October 18). Fossilized Liquid Assembly: Nanomaterials Research Tool. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2006/10/061012184208.htm
National Institute of Standards and Technology. "Fossilized Liquid Assembly: Nanomaterials Research Tool." ScienceDaily. www.sciencedaily.com/releases/2006/10/061012184208.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) — A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) — Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) — Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) — The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins