Featured Research

from universities, journals, and other organizations

Research Could Lead To New Treatments For Birth Defects

Date:
October 16, 2006
Source:
University of Manchester
Summary:
Pioneering new research into cleft lip and palate could open the door to babies with certain craniofacial disorders being successfully treated in the womb. University of Manchester researchers have uncovered the causes behind two genetic conditions that lead to facial anomalies including clefts, where the lip and often the roof of the mouth, or palate, fail to form properly. Working with colleagues at the University of Iowa, Manchester husband and wife team Mike and Jill Dixon together with researcher Rebecca Richardson, have identified the role of a gene called IRF6.

Pioneering new research into cleft lip and palate could open the door to babies with certain craniofacial disorders being successfully treated in the womb.

University of Manchester researchers have uncovered the causes behind two genetic conditions that lead to facial anomalies including clefts, where the lip and often the roof of the mouth, or palate, fail to form properly.

Working with colleagues at the University of Iowa, Manchester husband and wife team Mike and Jill Dixon together with researcher Rebecca Richardson, have identified the role of a gene called IRF6.

"We had previously shown that a mutation in the IRF6 gene causes Van der Woude syndrome -- a rare inherited form of cleft lip and palate," said Professor Mike Dixon, a dentist based in the Faculty of Life Sciences.

"It has also been found that defects in this gene are responsible for a significant number of other cleft lip and palate disorders that are not related to any particular syndrome."

The team established that mice missing the gene developed abnormal skin as well as cleft palate. Further analysis revealed that IRF6 controls the development of keratinocytes -- the main type of cells in the outer layers of the skin, known as the epidermis.

"Put simply, mutations of IRF6 in Van de Woude syndrome make the skin cells too sticky, so they stick to each other and other types of cell much sooner than they should resulting in these facial anomalies," said Professor Dixon.

The findings -- published in the journal Nature Genetics this week -- surprised the researchers, as all other genes in the IRF family have completely different roles, primarily in the body's immune response.

"This unexpected role for IRF6 in skin development may mean it is involved in other medically important areas of biology such as cancer and wound healing.

"In any event, this research has the potential to lead to new ways of treating cleft lip and palate caused by this genetic mutation, as targeting the defective gene during pregnancy could help the skin cells develop normally."

Further research by the Manchester team, this time with scientists at the Stowers Institute for Medical Research in Kansas, has uncovered the cellular processes involved in another genetic disorder that results in cleft palate.

Treacher Collins syndrome is characterised by underdeveloped jaw and cheek bones and ear anomalies, as well as cleft palate.

Whereas cleft lip and palate remains the most common form of congenital abnormality, affecting one in 1,000 babies in the UK, Treacher Collins syndrome is a relatively rare genetic disorder affecting one in 50,000 individuals.

"We identified the gene associated with this disorder some time ago but we have now established the reason for the anomalies," said Dr Jill Dixon.

"Working with a mouse model, we found that the craniofacial disorders are caused by the high number of cells, known as neural crest cells, that die before they have migrated to form the bone, cartilage and connective tissue in the face and head of the unborn animal.

"When translated to human development, this failure to produce enough neural crest cells in the first three to eight weeks of pregnancy results in the craniofacial anomalies observed in Treacher Collins syndrome."

Dr Paul Trainor, who headed the Kansas team, said the findings -- published in the Proceedings of the National Academy of Sciences (PNAS) -- were an exciting step in their investigations of genetic birth defects.

"In ongoing studies in the lab, we are testing a number of methods for chemically and genetically inhibiting the early period of cell death in an effort to stimulate the production of neural crest cells which could help to prevent the development of craniofacial anomalies."

Dr Robb Krumlauff, Scientific Director at the Stowers Institute, added: The results represent a major breakthrough in our understanding of Treacher Collins syndrome. But the door that these findings open -- to the possibility of intervening in utero to prevent the disease -- is truly groundbreaking."


Story Source:

The above story is based on materials provided by University of Manchester. Note: Materials may be edited for content and length.


Cite This Page:

University of Manchester. "Research Could Lead To New Treatments For Birth Defects." ScienceDaily. ScienceDaily, 16 October 2006. <www.sciencedaily.com/releases/2006/10/061015213619.htm>.
University of Manchester. (2006, October 16). Research Could Lead To New Treatments For Birth Defects. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2006/10/061015213619.htm
University of Manchester. "Research Could Lead To New Treatments For Birth Defects." ScienceDaily. www.sciencedaily.com/releases/2006/10/061015213619.htm (accessed October 2, 2014).

Share This



More Health & Medicine News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Ebola Patient Told Hospital He Was from Liberia

Ebola Patient Told Hospital He Was from Liberia

AP (Oct. 1, 2014) The first Ebola patient diagnosed in the U.S. initially went to a Dallas emergency room last week but was sent home, despite telling a nurse that he had been in disease-ravaged West Africa, the hospital acknowledged Wednesday. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Insertable Cardiac Monitor

Insertable Cardiac Monitor

Ivanhoe (Oct. 1, 2014) A heart monitor the size of a paperclip that can save your life. The “Reveal Linq” allows a doctor to monitor patients with A-Fib on a continuous basis for up to 3 years! Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins