Featured Research

from universities, journals, and other organizations

Insight Into Dopamine Role Suggests New Treatment Pathway For Parkinson's

Date:
October 19, 2006
Source:
Cell Press
Summary:
Dopamine (DA) not only functions as a neurotransmitter, a chemical messenger between neurons by which one neuron triggers another, researchers have found. It also appears to coordinate the activity of a particular neural circuitry. In studies with mice, they found evidence that the dopamine deficiency in Parkinson's and other related movement disorders may cause loss of muscle control and paralysis due to disruption of coordinated activity in this circuit.

Dopamine (DA) not only functions as a neurotransmitter, a chemical messenger between neurons by which one neuron triggers another, researchers have found. It also appears to coordinate the activity of a particular neural circuitry. In studies with mice, they found evidence that the dopamine deficiency in Parkinson's and other related movement disorders may cause loss of muscle control and paralysis due to disruption of coordinated activity in this circuit.

Related Articles


The finding is in contrast with the widely held belief that such pathology is caused by an overall inhibition of brain activity due to lack of dopamine in such disorders as Parkinson's.

The researchers said their findings suggest new treatments for Parkinson's and other such disorders aimed at restoring this dopamine-regulated circuitry coordination.

Rui Costa and colleagues published their findings in the October 19, 2006, issue of the journal Neuron, published by Cell Press.

In their experiments, the researchers used knockout mice genetically altered to lack the dopamine transporter--the protein that recycles dopamine after it has been released during neuronal triggering. Since such animals lack a store of dopamine, the researchers could quickly deplete the animals of dopamine using a drug that blocked its synthesis. And conversely, they could quickly restore dopamine by administering a mix of L-Dopa and carbidopa. To analyze the effects on neural circuitry of such manipulations, the researchers used an array of electrodes to measure brain activity across ensembles of many neurons in the "corticostriatal" regions of the animals' brains that control motor function.

The researchers recorded neuronal activity under four conditions:

  • when the animals were undisturbed in their cage
  • when they were placed in a novel environment, which triggers hyperactivity, or "hyperkinesia," in such knockout mice
  • when they were depleted of dopamine using a drug, which causes muscle paralysis, or "akinesia," and
  • during restoration of motor activity by administration of L-Dopa/carbidopa.

"We found that contrarily to a commonly adopted view the overall levels of cortical activity did not change during transition from a state of extreme hyperdopaminergia to a state of profound DA depletion with akinesia," wrote the researchers. "Instead, we observed dramatic and rapid changes in corticostriatal neuronal ensemble coordination during hyperdopaminergia-related hyperkinesia and after acute DA depletion. These alterations were DA dependent and were reversed by the administration of L-Dopa."

The researchers concluded that "our data indicate that rapid alterations in dopamine transmission cause substantial changes in the coordinated activity of neuronal ensembles in corticostriatal circuits, leading to the emergence of striking behavioral abnormalities. Thus, although slow adaptations that take place following chronic dopamine depletion or psychostimulant treatment can be important for some aspects of the pathophysiology of DA-related disorders, many functionally important changes may stem from rapid alterations in network synchrony.

Costa and colleagues also concluded that their findings could have implications for treating Parkinson's and related movement disorders, writing that "therapeutic interventions that restore normal synchronicity in these circuits, using either pharmacological or electrophysiological manipulations, and targeted not only to basal ganglia but also directly to motor cortex can be potentially beneficial to DA-related motor dysfunction and Parkinson's disease."

The researchers include Rui M. Costa of Duke University Medical Center in Durham, NC and NIAAA, NIH in Bethesda, MD; Shih-Chieh Lin, Tatyana D. Sotnikova, Michel Cyr, Raul R. Gainetdinov, Marc G. Caron, and Miguel A.L. Nicolelis of Duke University Medical Center in Durham, NC.

This work was supported by funding from the Portuguese FCT, PMERP, and NIAAA DICBR to R.M.C.; Michael J. Fox Foundation for Parkinson's Research to R.R.G., T.D.S., and M.G.C.; and from NARSAD, HDF, and NIH to M.A.L.N.

Costa et al.: "Rapid Alterations in Corticostriatal Ensemble Coordination during Acute Dopamine-Dependent Motor Dysfunction." Publishing in Neuron 52, 359--369, October 19, 2006. DOI 10.1016/j.neuron.2006.07.030 http://www.neuron.org


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Insight Into Dopamine Role Suggests New Treatment Pathway For Parkinson's." ScienceDaily. ScienceDaily, 19 October 2006. <www.sciencedaily.com/releases/2006/10/061018151048.htm>.
Cell Press. (2006, October 19). Insight Into Dopamine Role Suggests New Treatment Pathway For Parkinson's. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2006/10/061018151048.htm
Cell Press. "Insight Into Dopamine Role Suggests New Treatment Pathway For Parkinson's." ScienceDaily. www.sciencedaily.com/releases/2006/10/061018151048.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com
You Don't Have To Be Alcohol Dependent To Need Treatment

You Don't Have To Be Alcohol Dependent To Need Treatment

Newsy (Nov. 21, 2014) A study by the Centers for Disease Control and Prevention found 9 out of 10 excessive drinkers in the country are not alcohol dependent. Video provided by Newsy
Powered by NewsLook.com
Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins