Featured Research

from universities, journals, and other organizations

NASA Satellite Finds The World's Most Intense Thunderstorms

Date:
October 27, 2006
Source:
NASA/Goddard Space Flight Center
Summary:
A summer thunderstorm often provides much-needed rainfall and heat wave relief, but others bring large hail, destructive winds and tornadoes. Now with the help of NASA satellite data, scientists are gaining insight into the distribution of such storms around much of the world.

A snapshot of the worldwide inventory of thunderstorms from NASA's Tropical Rainfall Measuring Mission shows storms over Texas on April 30, 2004. The image shows raindrops or larger ice particles that have been carried aloft by strong rising air currents in the storms. Blue, green and red correspond to low, moderate, and high heights, respectively.
Credit: NASA

A summer thunderstorm often provides much-needed rainfall and heat wave relief, but others bring large hail, destructive winds, and tornadoes. Now with the help of NASA satellite data, scientists are gaining insight into the distribution of such storms around much of the world.

By using data from the NASA Tropical Rainfall Measuring Mission (TRMM) satellite, researchers identified the regions on Earth that experience the most intense thunderstorms. Their study was published in the August 2006 issue of the Bulletin of the American Meteorological Society. The strongest storms were found to occur east of the Andes Mountains in Argentina, where warm, humid air often collides with cooler, drier air, similar to storms that form east of the Rockies in the United States. Surprisingly, some semi-arid regions have powerful storms, including the southern fringes of the Sahara, northern Australia, and parts of the Indian subcontinent. In contrast, rainy areas such as western Amazonia and Southeast Asia experience frequent storms, but relatively few are severe. Northern Pakistan, Bangladesh, and parts of Central Africa also experience intense thunderstorms.

"TRMM has given us the ability to extend local knowledge about storms to a near-global reach," said lead author Edward Zipser, University of Utah, Salt Lake City. "In addition to containing the only precipitation radar in space, TRMM's other instruments provide a powerful overlap of data that is extremely useful for studying storms."

The researchers examined global thunderstorm data supplied by TRMM from 1998-2004. To determine an individual storm's intensity, they specifically examined the height of radar echoes, radiation temperature, and lightning flash rate, each measured by separate TRMM instruments.

The study also confirmed previous findings. For example, the locations of the heaviest rainfall on Earth -- usually in tropical oceans and along certain mountain slopes -- rarely coincide with the regions of most intense storms. They also found that the strongest storms tend to occur over land, rather than over oceans. The intense storms that do develop over oceans usually occur in areas near land that favor storm motion from land to ocean. Examples include tropical oceans west of Central America and West Africa, and subtropical oceans east of the southeastern United States, South America, Australia and Africa. Many regions of the world also have a seasonal preference for strong storms, including spring and summer for the south-central United States, June-August in the Sahel, and March-May over the Ganges Plain and Bangladesh.

Studying storms with satellite data began in the 1960s when researchers discovered that colder cloud top temperatures were linked to more intense storms. But later, scientists found that many storms of average intensity also reach very high altitudes, where colder temperatures are found. For a more accurate, quantitative description of a storm, radar, microwave, and lightning data are also needed to study a thunderstorm's inner structure.

"Prior to TRMM, we could only study individual storms that were captured by a ground-based radar or lightning network," said co-author Daniel Cecil, University of Alabama-Huntsville, Huntsville, Ala. "Those instruments are not available in many places and trying to find an interesting storm that was simultaneously observed by a satellite required remarkable luck, but TRMM has been supplying a variety of measurements from individual storms around the world for nearly nine years now."

The instruments on TRMM provide data and precision that other satellites cannot. Its precipitation radar is unique because it measures the properties of a storm with high vertical resolution, helping scientists to identify the stronger rising air currents, or updrafts, in a thunderstorm. TRMM also has a lightning sensor, which identifies both cloud-to-ground and in-cloud lightning, and its microwave imager gives detailed information on the ice content within a storm, also related to the speed of updrafts.

While each TRMM instrument measures different aspects of a storm, the researchers found that the data from each usually matched quite well, agreeing on the location and distribution of the strongest storms.

"The results from this study help to quantify the differences in the type and intensity of thunderstorms that occur in different climate regimes around the world," said Cecil. "The effects on the atmosphere of an intense, monstrous thunderstorm over Argentina or Oklahoma contrasts greatly with the effects from a more ordinary storm over the Amazon basin."

In the future, and as the dataset from TRMM continues to increase, these observations will be used to test whether computer models used for climate prediction and weather forecasting are accurately capturing the details of thunderstorms. If not, scientists will have the details necessary to build better, more realistic models that will aid meteorologists in providing more accurate forecasts.

The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA) and is designed to monitor and study tropical rainfall.


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center. "NASA Satellite Finds The World's Most Intense Thunderstorms." ScienceDaily. ScienceDaily, 27 October 2006. <www.sciencedaily.com/releases/2006/10/061026095353.htm>.
NASA/Goddard Space Flight Center. (2006, October 27). NASA Satellite Finds The World's Most Intense Thunderstorms. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2006/10/061026095353.htm
NASA/Goddard Space Flight Center. "NASA Satellite Finds The World's Most Intense Thunderstorms." ScienceDaily. www.sciencedaily.com/releases/2006/10/061026095353.htm (accessed July 22, 2014).

Share This




More Earth & Climate News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Orleans Plans to Recycle Cigarette Butts

New Orleans Plans to Recycle Cigarette Butts

AP (July 21, 2014) New Orleans is the first U.S. city to participate in a large-scale recycling effort for cigarette butts. The city is rolling out dozens of containers for smokers to use when they discard their butts. (July 21) Video provided by AP
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
Spectacular Lightning Storm Hits London

Spectacular Lightning Storm Hits London

AFP (July 19, 2014) A spectaCular lightning storm struck the UK overnight Friday. Images of lightning strikes over the Shard and Tower Bridge in central London. Duration: 00:23 Video provided by AFP
Powered by NewsLook.com
A Centuries' Old British Tradition Is Far from a Swan Song

A Centuries' Old British Tradition Is Far from a Swan Song

AFP (July 19, 2014) As if it weren't enough that the Queen is the Sovereign of the UK and 15 other Commonwealth realms, she is also the owner of all Britain's unmarked swans. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins