Featured Research

from universities, journals, and other organizations

Nanoparticle Shows Promise In Reducing Radiation Side Effects

Date:
November 10, 2006
Source:
Thomas Jefferson University
Summary:
With the help of tiny, transparent zebrafish embryos, researchers are hoping to prove that a microscopic nanoparticle can be part of a "new class of radioprotective agents" that help protect normal tissue from radiation damage just as well as standard drugs. They've shown that the nanoparticle, DF-1 -- a soccer ball-shaped, hollow, carbon-based structure known as a fullerene -- is as good as two antioxidant drugs and FDA-approved Amifostine in fending off radiation damage from normal tissue.

With the help of tiny, transparent zebrafish embryos, researchers at the Kimmel Cancer Center at Thomas Jefferson University and Jefferson Medical College are hoping to prove that a microscopic nanoparticle can be part of a “new class of radioprotective agents” that help protect normal tissue from radiation damage just as well as standard drugs.

Reporting November 7, 2006 at the annual meeting of the American Society for Therapeutic Radiology and Oncology in Philadelphia, they show that the nanoparticle, DF-1 – a soccer ball-shaped, hollow, carbon-based structure known as a fullerene – is as good as two other antioxidant drugs and the FDA-approved drug, Amifostine in fending off radiation damage from normal tissue.

The scientists, led by Adam Dicker, M.D., Ph.D., professor of radiation oncology at Jefferson Medical College of Thomas Jefferson University in Philadelphia and at Jefferson’s Kimmel Cancer Center, and Ulrich Rodeck, M.D., professor of dermatology at Jefferson Medical College, compared DF-1 to two superoxidase dismutase mimetics, which are antioxidant drugs. They exposed zebrafish embryos to radiation with either DF-1 or a sod or amifostine. Each of the three markedly reduced radiation damage and increased overall survival and was comparable to the protection provided by the Amifostine.

Dr. Dicker explains that one way that radiation frequently damages cells and tissues is by producing “reactive oxygen species” – oxygen radicals, peroxides and hydroxyls. The scientists showed that zebrafish embryos exposed to ionizing radiation had more than 50 percent reduction in the production of reactive oxygen species compared to untreated embryos. DF-1 acts like an “oxygen sink,” binding to dangerous oxygen radicals.

“We use the model to show that not only does it protect and improve the overall survival of these zebrafish embryos, but it can also protect from the toxic effects of radiation on particular organ systems, such as the kidney and central nervous system,” Dr. Dicker says.

Zebrafish embryos are transparent for the first month of life and allow scientists to closely observe organ damage produced by cancer treatments. Zebrafish have most of their organs formed by the third day after fertilization.

While chemotherapy and radiotherapy are the standard treatments for cancer, they take their respective toll on the body. Radiation can damage epithelial cells and lead to permanent hair loss, among other effects, and certain types of systemic chemotherapy can produce hearing loss and damage to a number of organs, including the heart and kidneys. Some other side effects include esophagitis, diarrhea, and mouth and intestinal ulcers.

Only Amifostine has been approved to date by the federal Food and Drug Administration, to help protect normal tissue from the side effects of chemotherapy and radiation, and researchers would like to develop new and improved agents.

Dr. Dicker and his co-workers are currently collaborating with National Cancer Institute investigators to study DF-1’s ability in mice to protect against the harmful effects of ionizing radiation.


Story Source:

The above story is based on materials provided by Thomas Jefferson University. Note: Materials may be edited for content and length.


Cite This Page:

Thomas Jefferson University. "Nanoparticle Shows Promise In Reducing Radiation Side Effects." ScienceDaily. ScienceDaily, 10 November 2006. <www.sciencedaily.com/releases/2006/11/061108154306.htm>.
Thomas Jefferson University. (2006, November 10). Nanoparticle Shows Promise In Reducing Radiation Side Effects. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2006/11/061108154306.htm
Thomas Jefferson University. "Nanoparticle Shows Promise In Reducing Radiation Side Effects." ScienceDaily. www.sciencedaily.com/releases/2006/11/061108154306.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins