Featured Research

from universities, journals, and other organizations

Manmade Protein Shows Promise For Cancer, Macular Degeneration

Date:
November 13, 2006
Source:
Medical College of Georgia
Summary:
Potentially blinding blood vessel growth in the cornea resulting from eye injury or even surgery can be reduced by more than 50 percent with a new manmade protein, researchers say.

Dr. Balamurali K. Ambati, corneal specialist at the Medical College of Georgia and Augusta Veterans Affairs Medical Center. (Phil Jones photo)

Potentially blinding blood vessel growth in the cornea resulting from eye injury or even surgery can be reduced by more than 50 percent with a new manmade protein, researchers say.

Related Articles


“We believe eventually we’ll be able to use this protein to help patients in many situations where blood vessel formation is detrimental, including cancer, diabetic retinopathy and macular degeneration,” says Dr. Balamurali K. Ambati, corneal specialist at the Medical College of Georgia and Augusta Veterans Affairs Medical Center. Dr. Ambati is corresponding author of the study published in the November issue of Investigative Ophthalmology & Visual Science.

The body can produce new blood vessels to promote healing after trauma, such as a corneal transplant, a significant corneal scratch from a contact lens or retinal oxygen deprivation caused by diabetes or aging. This natural response, called angiogenesis, becomes detrimental when new growth obstructs vision or when a tumor pirates the process to survive.

In an animal model, researchers used the protein they developed to reverse obstructive growth as long as one month after injury, says Dr. Ambati. That’s a very long time after injury in a mouse’s lifetime, indicating even well-established blood vessels are susceptible to intraceptor-mediated regression, he says.

This intraceptor traps vascular endothelial growth factor, or VEGF, inside the protein making machinery of a cell. It’s made with a portion of a VEGF receptor called sflt-1, a free-floating receptor recently shown to help keep the cornea clear by taking up and effectively neutralizing VEGF. Although other molecules have an anti-angiogenic effect, sflt-1 was the only one they found that spurs corneal blood vessels when blocked. The work, published in October in Nature, was led by teams at MCG and the University of Kentucky.

“Now we have designed a novel recombinant molecule where we take a subunit of sflt-1 and couple it with a four-amino-acid peptide tail,” he says. “The tail essentially handcuffs the manmade molecule within the protein-making machinery of the cell so that it stays there and anything that binds with it, namely VEGF, stays there too. So it’s a very specific way of down-regulating a target protein.”

In May 2005, Dr. Ambati and his colleagues published work in Investigative Ophthalmology & Visual Science showing the intraceptor helped reduce blood vessel development in the test tube and animal models for corneal injury and melanoma.

“Now we are talking about making them go away,” says Dr. Ambati. While the work is still in the laboratory, it provides further evidence of the intraceptor’s potential  clinical application, he says.

The work shows the intraceptor prompts regression of blood vessels by inducing programmed cell death, or apoptosis, in the vascular endothelial cells that line the vessels.

“The biology of all this is showing this molecule interrupts the proper folding of proteins involved in existing blood vessels, which makes them die. It’s a nice result,” says Dr. Ambati.

Some existing anti-angiogenesis treatments target VEGF outside cells. “It is important to bind it within cells because certain cells, such as cancer and blood vessel cells, have the capability to produce their own VEGF and their own receptors,” Dr. Ambati says. “Imagine trying to block from the outside a factory that has everything it needs inside. You have to throw a monkey wrench inside the factory and that is what we managed to do.”

For the study, the manmade protein was injected directly into the cornea with a microneedle. “Ideally we would like to develop a topical eye drop with a long-term delivery system,” says Dr. Ambati.

His research team is pursuing its work of the intraceptor’s potential role in destroying blood vessels that help sustain cancers.  They also are looking at a biodegradable polymer cage so they can encapsulate the intraceptor, tag it with a homing device for target cells and deliver it “like a missile carrying a payload” into the desired cells where it will slowly release the intraceptor, he says.

Co-authors include Dr. Nirbhai Singh, MCG postdoctoral fellow; Pooja D. Jani and Shivan Amin, MCG medical students; and Tushar Suthar, a medical student at New York Medical College in Valhalla.

The research was funded by the Knights-Templar Eye Foundation, Fight For Sight Grant-in-Aid and the Association for Research in Vision and Ophthalmology/Alcon Postdoctoral Fellowship.


Story Source:

The above story is based on materials provided by Medical College of Georgia. Note: Materials may be edited for content and length.


Cite This Page:

Medical College of Georgia. "Manmade Protein Shows Promise For Cancer, Macular Degeneration." ScienceDaily. ScienceDaily, 13 November 2006. <www.sciencedaily.com/releases/2006/11/061109130620.htm>.
Medical College of Georgia. (2006, November 13). Manmade Protein Shows Promise For Cancer, Macular Degeneration. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2006/11/061109130620.htm
Medical College of Georgia. "Manmade Protein Shows Promise For Cancer, Macular Degeneration." ScienceDaily. www.sciencedaily.com/releases/2006/11/061109130620.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins