Featured Research

from universities, journals, and other organizations

Engineer Focuses On Mechanics Of Better Bullet Proofing

Date:
November 22, 2006
Source:
Kansas State University
Summary:
Body armor with greater ballistics resistance is the aim of the research being carried out by Youqi Wang, associate professor of mechanical engineering at Kansas State University, with support from two US Department of Defense agencies.

Body armor with greater ballistics resistance is the aim of the research being carried out by Youqi Wang, associate professor of mechanical engineering at Kansas State University, with support from two U.S. Department of Defense agencies.

The Army Research Lab and Army Research Office awarded Wang grants totaling $350,000 for her new approach to how next-generation ballistic-resistant fabrics/textiles/materials might be designed. The three-year projects are "High-speed penetration failure mechanisms of textile fabrics and armor-grade textile composites" and "High-performance cluster for the simulation of ballistic penetrations."

An earlier composites design project sponsored by the Air Force brought Wang's unique design approach to the attention of the Army agencies. She is developing a computational model for the ballistics simulation of a fabric given its basic physical and mechanical properties.

"The important question for us is how can we determine the relationship between a material's properties and the ballistic resistance of any final product made of such material," she said.

"We're going to attack the basic mechanics of the problem," Wang said. "Thread is constructed of yarn; yarn has thousands of fibers; fibers have strands; and in between you have fiber-to-fiber interactions. Once we identify the mechanical properties, we'd like to analyze the fabric's behavior. Ours is the first computer model to attack this problem."

In October, Wang installed the cluster of computational computers for the project.

"We purchased a small cluster in order to demonstrate that our design approach is feasible," she said. "If we show that our design approach is a sound one using only a few computers, we think our design tool has a better chance of being adopted."

Now in year two of the three-year projects, Wang has already designed sample materials that were tested for ballistics-resistance at the Army research facilities at Aberdeen, Md.

According to Wang, because there's a need for better body armor for the military, it's become extremely important to ask how protective materials will be designed in the future. The Army wants to reduce the weight, improve mobility and protect soldiers in combat or police officers and others, she said.

Wang's analysis begins with the properties of a single fiber and gains complexity: How much force can a thread withstand? If it is woven this way or that, what changes?

Next, she analyzes fabric properties: What should be the proper size of the yarn? What should be the structure of the yarn? Should it be twisted, plain or braided? What will be better? Then comes the textile-making process, weaving, braiding, yarn orientation. What orientation or interlock structure will be better for a ballistic-resistant fabric?

"How we answer the questions is going to be quite important in coming years," Wang said.

Since a single layer of a material will not stop a bullet, Wang said, the goal is to design thick layers of fabric, perhaps as many as five to 10 layers of fabric, or a 3-dimensional, woven fabric, in such a way that a bullet's energy dissipates along the fibers and the layers absorb the most possible energy.

"We don't want the impact energy to stay in one direction. We want it to go 3-dimensional," she said. "Our goal is to protect lives and defeat the bullet."

Wang joined K-State in 1994 and was promoted to associate professor in 2000. An Alexander von Humboldt Fellow, she earned both a master's and doctorate in structural engineering from China's Shanghai Jiao Tong University.


Story Source:

The above story is based on materials provided by Kansas State University. Note: Materials may be edited for content and length.


Cite This Page:

Kansas State University. "Engineer Focuses On Mechanics Of Better Bullet Proofing." ScienceDaily. ScienceDaily, 22 November 2006. <www.sciencedaily.com/releases/2006/11/061120120857.htm>.
Kansas State University. (2006, November 22). Engineer Focuses On Mechanics Of Better Bullet Proofing. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2006/11/061120120857.htm
Kansas State University. "Engineer Focuses On Mechanics Of Better Bullet Proofing." ScienceDaily. www.sciencedaily.com/releases/2006/11/061120120857.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins