Featured Research

from universities, journals, and other organizations

Brilliant Growth Without Gold: New Methods For Manufacturing Nanowires From Silicon

Date:
November 29, 2006
Source:
Max Planck Society
Summary:
Silicon nanowires can help to further reduce the size of microchips. Scientists at the Max Planck Institute for Microstructure Physics in Halle have for the first time developed single crystal silicon nanowires that fulfil the key criteria to this end. The researchers used aluminium as a catalyst to grow the nanowires.

Silicon nanowires produced with aluminium as a catalyst. (a) Schematic representation of a silicon nanowire. (b) Dyed scanning electron microscopic image of silicon nanowires (approximately 40 nanometers in diameter).
Credit: Image : Max Planck Institute for Microstructure Physics

Silicon nanowires can help to further reduce the size of microchips. Scientists at the Max Planck Institute for Microstructure Physics in Halle have for the first time developed single crystal silicon nanowires that fulfil the key criteria to this end. The researchers used aluminium as a catalyst to grow the nanowires.

To date, scientists have usually deployed gold for this purpose. However, even traces of the precious metal have a drastically detrimental effect on the function of semiconductor components. This is not the case with other metals, which catalyse the process, but only at temperatures that would not enable economically viable processes. On the other hand, aluminium is an effective catalyst even at relatively low temperatures and does not impair the quality of electronic components (Nature Nanotechnology, online: November 26, 2006).

In its never-ending quest to develop more efficient and more powerful microchips, the semiconductor industry is constantly advancing the miniaturization of circuits. Currently, the transistors lie on the surface of the substrate. Vertical silicon nanowires would reduce the space requirement considerably.

Researchers at the Max Planck Institute for Microstructure Physics have now grown silicon nanowires on aluminium particles for the first time. Such nanowires are suitable for applications in the micro-chip industry, unlike nanowires which form on gold, the material that has mostly been used as a catalyst material up to now. Gold reduces the quality of microelectronic components drastically, and must not even come close to the production machines.

Aluminium on the other hand does not have a detrimental effect on chip properties and it is already in use in the semi-conductor industry. Furthermore, it causes silicon nanowires of particularly high quality to "sprout" at relatively low temperatures, around 450 C, which is a precondition in keeping the lid on process costs. "The new process fulfils the most important criteria for the production of silicon nanowires on an industrial scale," says Dr. Stephan Senz, one of the scientists involved.

In order to break aluminium down into such small particles that fine wires are formed, the researchers heat a thin film on a silicon substrate. The film tears into tiny pieces. Subsequently, the scientists carry out a familiar procedure: they direct silane, a gas containing silicon, onto the surface, where it is converted to elementary silicon on the catalyst particle. The silicon dissolves in the aluminium particle. When the particle cannot absorb any more silicon, it crystallises out again on the underside. This causes a single crystal silicon nanowire, diameter approximately 40 nanometers, to grow, bearing a catalyst particle on its tip.

This promising research on semiconductor nanowires straddles the interface between basic research and technical applications. "Apart from the possibility of using them in the semiconductor industry, the nanowires are very interesting for basic research, as little is as yet known about their properties and their growth," explains Senz. "If the dimensions were just a little smaller, we would even see quantum effects."


Story Source:

The above story is based on materials provided by Max Planck Society. Note: Materials may be edited for content and length.


Cite This Page:

Max Planck Society. "Brilliant Growth Without Gold: New Methods For Manufacturing Nanowires From Silicon." ScienceDaily. ScienceDaily, 29 November 2006. <www.sciencedaily.com/releases/2006/11/061128140615.htm>.
Max Planck Society. (2006, November 29). Brilliant Growth Without Gold: New Methods For Manufacturing Nanowires From Silicon. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2006/11/061128140615.htm
Max Planck Society. "Brilliant Growth Without Gold: New Methods For Manufacturing Nanowires From Silicon." ScienceDaily. www.sciencedaily.com/releases/2006/11/061128140615.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins