Featured Research

from universities, journals, and other organizations

Like Diamonds And Ice: Chemists Synthesize New Form Of Germanium

Date:
November 29, 2006
Source:
University of Houston
Summary:
Thanks to a University of Houston scientist and his team's research, the chemical element germanium is enjoying a rebound in popularity. Led by Arnold Guloy, a UH chemistry professor, and a team of researchers from UH and the Max Planck Institute for Chemical Physics of Solids in Dresden, Germany, the findings are described in a paper titled "A Guest-free Germanium Clathrate" published in Nature magazine.

Not since the use of germanium in the first transistor radios and the discovery of its crucial role in semiconductor research more than 50 years ago has the study of this element garnered so much attention.

This half-century rebound in popularity is thanks to a University of Houston scientist and his team's research into a first-time, low-density synthetic form of this chemical element. Led by Arnold Guloy, a UH chemistry professor, and a team of researchers from UH and the Max Planck Institute for Chemical Physics of Solids in Dresden, Germany, where Guloy is also a guest scientist, the findings are described in a paper titled "A Guest-free Germanium Clathrate" published in Nature magazine, a scientific journal for biological and physical sciences research.

The usual form of germanium has the same structure as a diamond, and this new form has a beautiful and unique "cage" structure. That is, it has a crystal structure with an open framework having empty cages or cavities. Additionally, this new solid form of germanium is less dense and has the uncommon property of ice in that it floats in its own liquid.

"There is a high interest in clathrate or open-framework semiconductors as a general class of high-tech materials," Guloy said. "These materials have lower densities and larger band gaps than the usual forms of semiconductors due to their rather open or 'porous' structures. Until our report, there was no scalable and high-yield preparative technique to produce these materials -- particularly the silicon- and germanium-based clathrate semiconductors."

As an important semiconductor material, germanium has thousands of applications that range from use in fiber optics communication networks to infrared night vision systems. Anything that is computerized or uses radio waves uses semiconductors.

"The synthesis of this new form of germanium should allow for new avenues of research in the germanium semiconductor," said John Bear, dean of UH's College of Natural Sciences and Mathematics. "Clathrate semiconductors have significant technological potential because they exhibit a very wide variety of materials properties."

Silicon (which replaced germanium in transistor radios) and germanium form the most important semiconductors for electronic devices. However, their classical forms exhibit small and indirect band gaps that are not suitable for many possible optoelectronic applications that combine light and electronics technology. This new caged form of germanium will provide scientists useful information to design high-efficiency thermoelectrics, gain a better understanding of superconductivity in this class of materials and create more new materials based on Guloy's synthetic technique, as well as point to "the possibility of making silicon and carbon analogs that would be even more spectacular," he said.

"This breakthrough has resulted in a form of germanium with a low-density, open-caged structure and the potential to emit light," Guloy said. "Furthermore one cannot make this empty germanium clathrate or 'cage' compound by any other means. Our method is done at relatively mild temperatures -- 300 degrees Celsius -- and being a solution technique it can easily be scaled to prepare thin films and its other functional forms. We have created a low-density, metastable form of germanium that has lots of holes in it -- a cage structure -- and this has been predicted to have unusual thermoelectric and optoelectronic properties, such as the potential to emit light. All previously known compounds with clathrate structures have something in the cages to keep them from collapsing. It's amazing that our new germanium structure can be constructed even though its cages are empty."

al Science Foundation, the Texas Center for Superconductivity at the University of Houston and the Max Planck Institute for Chemical Physics of Solids.

"It is always novel and scientifically important to find a new form of an element that is not made naturally," Guloy said. "Since the material has never been made before, there is really no designed or direct application for it yet. The synthesis of this unusual material and the predicted properties open many possibilities. This is similar to the preparation of the buckyball in 1985, where researchers initially did not know what they were good for until they were made in bulk quantities that led to subsequent research, discovering many applications for the now-famous material."

Bear adds that this particular synthesis of germanium allows for the preparation of bulk material, and the scalability of the solution method offers excellent prospects of processing clathrate semiconductors.

This research was funded in part by the Welch Foundation and the Petroleum Research fund.


Story Source:

The above story is based on materials provided by University of Houston. Note: Materials may be edited for content and length.


Cite This Page:

University of Houston. "Like Diamonds And Ice: Chemists Synthesize New Form Of Germanium." ScienceDaily. ScienceDaily, 29 November 2006. <www.sciencedaily.com/releases/2006/11/061129093459.htm>.
University of Houston. (2006, November 29). Like Diamonds And Ice: Chemists Synthesize New Form Of Germanium. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2006/11/061129093459.htm
University of Houston. "Like Diamonds And Ice: Chemists Synthesize New Form Of Germanium." ScienceDaily. www.sciencedaily.com/releases/2006/11/061129093459.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins