Featured Research

from universities, journals, and other organizations

Parkinson's Approach With Stem Cells A Promising First Step

Date:
December 4, 2006
Source:
University of Rochester Medical Center
Summary:
Brain cells derived from human embryonic stem cells improved the condition of rats with Parkinson's-like symptoms dramatically, but the treatment caused a significant problem -- the appearance of brain tumors -- that scientists are now working to solve. The study is featured on the cover of the November issue of Nature Medicine.

Brain cells derived from human embryonic stem cells improved the condition of rats with Parkinson's-like symptoms dramatically, but the treatment caused a significant problem -- the appearance of brain tumors -- that scientists are now working to solve. The study is featured on the cover of the November issue of Nature Medicine.

The work was reported by neurologist Steven Goldman, M.D., Ph.D., professor of Neurology at the University of Rochester Medical Center and chief of its Division of Cell and Gene Therapy, and Neeta Roy, Ph.D., assistant professor of Neurology at Cornell's Weill Medical College.

"The results are a real cause for optimism," said Goldman. "These animals with severe Parkinson's symptoms had a dramatically improved outcome after treatment. Now we have a new problem to work on, how to achieve the same benefit without creating tumors. But we expect to be able to solve this problem within the next year or two, using new approaches to cell sorting that we've been developing."

"All in all, this is the way medical discoveries move forward: One step at a time."

Goldman has spent much of his career creating ways to isolate stem cells, discovering the molecular signals that help determine what specific types of cells they become, and then re-creating those signals to direct the cells' development. It's the versatility of stem cells that make them so attractive. If scientists like Goldman are successful directing their development, such cells could provide a ready source of cells custom made to treat a given disease -- for instance, myelin-producing cells for multiple sclerosis, or the specific types of cells that die in patients with Parkinson's or Huntington's diseases.

In the experiment reported in Nature Medicine, Goldman, Roy and colleagues set out to grow brain cells called neurons that produce dopamine, a crucial brain chemical lacking in patients with Parkinson's. They began by isolating human embryonic stem cells, then using genes such as "sonic hedgehog" and fibroblast growth factor 8 that make chemicals in the normal brain environment. Such signals are the body's natural way of directing stem cells to develop into the specific cells needed.

Past attempts at using stems cells to make this type of neuron had achieved modest success, but only relatively small numbers could be produced in tissue culture. To improve upon this, Roy and Goldman attempted to re-create the natural environment of the developing brain as much as possible, so it would seem to the stem cells that they were developing in the part of the brain where dopamine neurons are normally made. The team did so by raising the cells together with brain cells known as astrocytes, which had come from the same brain region. These cells have long been known to play a crucial role nourishing neurons.

The result was that more than two-thirds of the stem cells developed into precisely the type of cell needed to treat Parkinson's disease -- dopamine-producing neurons. That percentage is far higher than any previous experiment had achieved.

The team then injected the cells into the brains of rats with Parkinson's-like symptoms, and watched for 10 weeks. While rats with the disorder walked in circles when prompted to move, as if they were chasing their tails, rats transplanted with the new cells recovered normal function and eventually stopped walking in circles. By eight weeks after treatment, the tail-chasing behavior ended completely, and they were walking and running normally.

Yet when the brains of the animals were examined, the team found tumors within the brain grafts. Goldman said the tumors sprang from stem cells that had started on the road to becoming neurons, but then stalled in their development and grew out of control. The team is working on ways to filter out those cells, to reap the benefits while avoiding the side effects of the approach.

"The appearance of tumors was disappointing, but not surprising," said Goldman. "The goals of this experiment were to create a population of cells that had many more dopamine neurons than previous attempts yielded, and to measure whether a group of cells with so many of these neurons would yield real-life benefits in terms of behavior. We accomplished both tasks. The cells improved the disease symptoms dramatically, beyond what we expected.

"In this first attempt of the technology, we did not attempt to try to absolutely purify the cell population that was transplanted -- thus the brain tumors. The experiment confirmed that we need to have an absolutely pure cell population, and we are working on ways to do that."

The work was supported by the National Institute of Neurological Disorders and Stroke, and the Michael J. Fox Foundation. Other authors of the paper, all at Cornell, are Carine Cleren, Shashi Singh, Lichuan Yang, and M. Flint Beal.


Story Source:

The above story is based on materials provided by University of Rochester Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Rochester Medical Center. "Parkinson's Approach With Stem Cells A Promising First Step." ScienceDaily. ScienceDaily, 4 December 2006. <www.sciencedaily.com/releases/2006/12/061201180642.htm>.
University of Rochester Medical Center. (2006, December 4). Parkinson's Approach With Stem Cells A Promising First Step. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2006/12/061201180642.htm
University of Rochester Medical Center. "Parkinson's Approach With Stem Cells A Promising First Step." ScienceDaily. www.sciencedaily.com/releases/2006/12/061201180642.htm (accessed April 17, 2014).

Share This



More Health & Medicine News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com
Formerly Conjoined Twins Released From Dallas Hospital

Formerly Conjoined Twins Released From Dallas Hospital

Newsy (Apr. 16, 2014) Conjoined twins Emmett and Owen Ezell were separated by doctors in August. Now, nearly nine months later, they're being released from the hospital. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins