Featured Research

from universities, journals, and other organizations

Powerful Earthquakes Can Be Detected Within Two Seconds

Date:
December 5, 2006
Source:
American Geophysical Union
Summary:
Could a few seconds warning of an impending strong earthquake be of practical use in mitigating its effects? Scientists, engineers, and first responders say yes, and now such warnings may be possible. Researchers in Italy have analyzed seismic signals from over 200 moderate to strong earthquakes, ranging from magnitude 4.0 to 7.4, and they conclude that the waves generated in the first few seconds of an earthquake (the primary, or P, waves) carry sufficient information to determine its magnitude and destructive potential.

Could a few seconds warning of an impending strong earthquake be of practical use in mitigating its effects? Scientists, engineers, and first responders say yes, and now such warnings may be possible. Researchers in Italy have analyzed seismic signals from over 200 moderate to strong earthquakes, ranging from magnitude 4.0 to 7.4, and they conclude that the waves generated in the first few seconds of an earthquake (the primary, or P, waves) carry sufficient information to determine its magnitude and destructive potential.

Related Articles


Aldo Zollo and Maria Lancieri of the University of Naples and Stefan Nielsen of the National Institute of Geophysics and Vulcanology in Rome determined that the peak amplitudes of very early seismic signals recorded in the vicinity of an earthquake source correlate with the earthquake magnitude and may be used for real-time estimation of the size of the event. Surprisingly, the researchers say, earthquake magnitude can be estimated using just two seconds' worth of signal from the first recorded P and S (secondary) waves, that is, while the earthquake is still in progress and far from over. The study will be published later this month in Geophysical Research Letters.

Primary waves travel around six kilometers [four miles] per second, covering around 60 kilometers [40 miles] in 10 seconds. Secondary, or S, waves, which are usually more destructive, travel more slowly, around 3.5 kilometers [2.2 miles] per second, covering only around 17 kilometers [11 miles] in 10 seconds. Therefore, a city located around 60 kilometers [40 miles] from an epicenter would have around 15 seconds of lead time to prepare for an earthquake's impact, the time difference between the arrival of the first P wave at a recording station near the epicenter and the arrival of the S wave at the city itself.

In the study, the researchers looked into the entire active seismic belt of the Mediterranean region, which includes varying geological and tectonic systems and faults. They compared signals from both P and S waves from more than 200 earthquakes and found that stress release and/or slip duration on the fault in the very early stage of seismic fracture relates both to the observed peak amplitude of the early P wave and to the elastic energy available for propagation of the fracture.

Although relatively few magnitude 7 earthquakes have hit the study area in recent years, there have been many instances of quakes in the magnitude 6 range. (A magnitude 7 earthquake is over 30 times more energetic than one of magnitude 6.) Zollo notes that even magnitude 6 quakes can produce great damage, especially in urbanized areas and places where old structures were not built to current standards; this defines much of the Mediterranean basin and applies also in other areas.

The researchers say that installations as close as 50 kilometers [30 miles] from the epicenter could receive an earthquake warning 10 seconds prior to the arrival of the main body wave of an earthquake. Places further from the epicenter would have additional time, though still measured in seconds. To take advantage of this brief warning period, automated systems would have to be created that respond instantly to notification alert signals, and they would have to be carefully calibrated to avoid missed or false alarms.

Engineers note that in tall buildings, the higher floors sway much more than those near ground level, so that even a moderate earthquake could cause severe damage to a highrise, Zollo says. Therefore, even at 70-80 kilometers [40-50 miles] distance from its epicenter, a magnitude 6 quake could affect hospital operating rooms and other critical installations.

Closer to the epicenter, a magnitude 6 or higher earthquake can damage critical infrastructure, such as telephone lines, gas pipelines, highways, and railroads, as well as airport runways and navigation systems. These disruptions would have a domino effect in more distant areas, which could be mitigated by an early warning alert system, based on the earliest primary wave data to arrive at recording stations close to the epicenter.

The researchers note that earthquake early warning systems can also help mitigate the effects of such earthquake-induced disasters as fires, explosions, landslides, and tsunamis, which can in many cases be more devastating than the earthquake itself. Systems could be installed at relatively low cost in developing countries, where moderate sized earthquakes can cause damage comparable to that caused by much larger earthquakes in developed countries, they say.

The study was funded in part by the consortium Analisi e Monitoraggio del Rischi Ambientali (AMRA) scarl through the European Union-Seismic Early Warning for Europe (EU-SAFER) project.


Story Source:

The above story is based on materials provided by American Geophysical Union. Note: Materials may be edited for content and length.


Cite This Page:

American Geophysical Union. "Powerful Earthquakes Can Be Detected Within Two Seconds." ScienceDaily. ScienceDaily, 5 December 2006. <www.sciencedaily.com/releases/2006/12/061204093342.htm>.
American Geophysical Union. (2006, December 5). Powerful Earthquakes Can Be Detected Within Two Seconds. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2006/12/061204093342.htm
American Geophysical Union. "Powerful Earthquakes Can Be Detected Within Two Seconds." ScienceDaily. www.sciencedaily.com/releases/2006/12/061204093342.htm (accessed October 30, 2014).

Share This



More Earth & Climate News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Raw: Hawaii Lava Approaching Village Road

Raw: Hawaii Lava Approaching Village Road

AP (Oct. 30, 2014) The lava flow on the Big Island of Hawaii was 225 yards from Pahoa Village Road on Wednesday night. The lava is slowing down but still approaching the village. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Endangered Carpathian Ponies Are Making a Comeback in Poland

Endangered Carpathian Ponies Are Making a Comeback in Poland

AFP (Oct. 29, 2014) At the foot of the rugged Carpathian mountains near the Polish-Ukrainian border, ranchers and scientists are trying to protect the Carpathian pony, known as the Hucul in Polish. Duration: 02:17 Video provided by AFP
Powered by NewsLook.com
Deadly Mudslide in Sri Lanka Buries Houses

Deadly Mudslide in Sri Lanka Buries Houses

AP (Oct. 29, 2014) A mudslide triggered by monsoon rains buried scores of workers' houses at a tea plantation in central Sri Lanka on Wednesday, killing at least 10 people and leaving more than 250 missing, an official said. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins