Featured Research

from universities, journals, and other organizations

Pair Of MicroRNA Molecules Controls Major Oncogene In Most Common Leukemia

Date:
December 15, 2006
Source:
American Association for Cancer Research
Summary:
Researchers at Ohio State University have discovered that two microRNA (miRNA) molecules help control the oncogene responsible for a dangerous form of B-cell chronic lymphocytic leukemia (B-CLL), the most common human leukemia in the world.

Researchers at Ohio State University have discovered that two microRNA (miRNA) molecules help control the oncogene responsible for a dangerous form of B-cell chronic lymphocytic leukemia (B-CLL), the most common human leukemia in the world.

Their findings, published in the December 15 issue of Cancer Research, demonstrate that miRNAs are emerging as powerful regulators of gene expression in cancer development, and could offer new targets for drug treatment, the investigators say.

In this case, high levels of two miRNAs known as miR-29 and miR-181 seem to suppress expression of the TCL1 oncogene that drives the most aggressive forms of the leukemia, said the study's lead author, Yuri Pekarsky, Ph.D., assistant professor in the Department of Molecular Virology, Immunology and Medical Genetics at Ohio State University's Comprehensive Cancer Center.

"We have found a direct inverse association between expression of miR-29 and miR-181 and that of the TCL1 oncogene," he said. "It works in both directions. High expression of these miRNAs correlates with low expression of TCL1, in the indolent form of cancer that is less likely to progress. A low level of miR-29 and miR-181 is associated with a much more aggressive cancer."

Drugs that boost production of these two natural TCL1 inhibitors might work as a future treatment for B-cell chronic lymphocytic leukemia, he said. These molecules could also be combined with 12 other miRNAs known to be associated with B-CLL to provide a test that may help determine prognosis and treatment, he said.

Researchers at Ohio State have been leaders in characterizing the role of miRNAs in cancer development. These small molecules are single-stranded RNA molecules that can act either as tumor suppressors or oncogenes. They can block transcription of genes by stopping them from producing messenger RNA or can inhibit translation of the genes by blocking production of proteins from messenger RNA, according to Pekarsky. Earlier this year the investigators provided the first direct evidence that over-expression of an miRNA molecule could result in development of cancer have since identified a number of miRNAs associated with B-cell chronic lymphocytic leukemia that appear to promote tumor development. But the protective miR-29 and miR-181 molecules are emerging as the most important miRNAs discovered to date, Pekarsky said. "MicroRNAs such as these could prove to be as powerful as the protein transcription factors that we know can turn genes on and off," he said.

The researchers studied TCL1 expression and miRNA expression in 23 samples of indolent B-CLL, 25 samples of aggressive B-CLL, and 32 samples of B-CLL exhibiting a chromosomal deletion, which makes it the most difficult type to treat. They found that TCL1 over-expression correlated with the two most aggressive forms of the cancer. To determine which miRNAs targeted TCL1, they used microRNA-microchips and elaborate computer programs to identify miR-29 and miR-181.

Regulation of TCL1 expression by these two miRNAs is relevant to all the three groups of cells studied, Pekarsky said. "You can look at the miRNA profile and say whether the cancer is aggressive or indolent," he said. And of the two miRNAs, miR-29 offers the most predictive power, Pekarsky added.

"We have a lot of work to do to characterize these miRNAs because we don't even know whether they work on transcriptional or translational level," he said. "But finding that they control this cancer's major risk factor is a very helpful advance."

The study was funded by the National Institutes of Health, among other grants. Researchers from the University of California at San Diego also contributed to the study.


Story Source:

The above story is based on materials provided by American Association for Cancer Research. Note: Materials may be edited for content and length.


Cite This Page:

American Association for Cancer Research. "Pair Of MicroRNA Molecules Controls Major Oncogene In Most Common Leukemia." ScienceDaily. ScienceDaily, 15 December 2006. <www.sciencedaily.com/releases/2006/12/061215090340.htm>.
American Association for Cancer Research. (2006, December 15). Pair Of MicroRNA Molecules Controls Major Oncogene In Most Common Leukemia. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2006/12/061215090340.htm
American Association for Cancer Research. "Pair Of MicroRNA Molecules Controls Major Oncogene In Most Common Leukemia." ScienceDaily. www.sciencedaily.com/releases/2006/12/061215090340.htm (accessed August 21, 2014).

Share This




More Health & Medicine News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) — Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Reasons Why Teen Birth Rates Are At An All-Time Low

Reasons Why Teen Birth Rates Are At An All-Time Low

Newsy (Aug. 20, 2014) — A CDC report says birth rates among teenagers have been declining for decades, reaching a new low in 2013. We look at several popular explanations. Video provided by Newsy
Powered by NewsLook.com
Common Antibiotic Could Lead To Heart-Related Death

Common Antibiotic Could Lead To Heart-Related Death

Newsy (Aug. 20, 2014) — Danish researchers discovered patients taking clarithromycin have an increased risk of dying from a heart-related issue. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins