Featured Research

from universities, journals, and other organizations

Laser-based Method Cleans Up Grubby Nanotubes

Date:
December 26, 2006
Source:
National Institute of Standards and Technology
Summary:
Before carbon nanotubes can fulfill their promise as ultrastrong fibers, electrical wires in molecular devices, or hydrogen storage components for fuel cells, better methods are needed for purifying raw nanotube materials. Researchers at the National Institute of Standards and Technology (NIST) and the National Renewable Energy Laboratory (NREL, Golden, Colo.), have taken a step toward this goal by demonstrating a simple method of cleaning nanotubes by zapping them with carefully calibrated laser pulses.

Before and after electron microscope images of a pyroelectric detector coated with single-walled nanotubes (SWNTs) visually demonstrate the effect of the laser cleaning process. In addition, the SWNTs look visibly blacker after laser treatment, suggesting less graphitic material and increased porosity.
Credit: NIST

Before carbon nanotubes can fulfill their promise as ultrastrong fibers, electrical wires in molecular devices, or hydrogen storage components for fuel cells, better methods are needed for purifying raw nanotube materials. Researchers at the National Institute of Standards and Technology (NIST) and the National Renewable Energy Laboratory (NREL, Golden, Colo.), have taken a step toward this goal by demonstrating a simple method of cleaning nanotubes by zapping them with carefully calibrated laser pulses.

Related Articles


When carbon nanotubes--the cylindrical form of the fullerene family--are synthesized by any of several processes, a significant amount of contaminants such as soot, graphite and other impurities also is formed. Purifying the product is an important issue for commercial application of nanotubes. In a forthcoming issue of Chemical Physics Letters*, the NIST/NREL team describes how pulses from an excimer laser greatly reduce the amount of carbon impurities in a sample of bulk carbon single-walled nanotubes, without destroying tubes. Both visual examination and quantitative measurements of material structure and composition verify that the resulting sample is "cleaner." The exact cleaning process may need to be slightly modified depending on how the nanotubes are made, the authors note. But the general approach is simpler and less costly than conventional "wet chemistry" processes, which can damage the tubes and also require removal of solvents afterwards.

"Controlling and determining tube type is sort of the holy grail right now with carbon nanotubes. Purity is a key variable," says NIST physicist John Lehman, who leads the research. "Over the last 15 years there's been lots of promise, but when you buy some material you realize that a good percentage of it is not quite what you hoped. Anyone who thinks they're going into business with nanotubes will realize that purification is an important--and expensive--step. There is a lot of work to be done."

The new method is believed to work because, if properly tuned, the laser light transfers energy to the vibrations and rotations in carbon molecules in both the nanotubes and contaminants. The nanotubes, however, are more stable, so most of the energy is transferred to the impurities, which then react readily with oxygen or ozone in the surrounding air and are eliminated. Success was measured by examining the energy profiles of the light scattered by the bulk nanotube sample after exposure to different excimer laser conditions. Each form of carbon produces a different signature. Changes in the light energy as the sample was exposed to higher laser power indicated a reduction in impurities. Before-and-after electron micrographs visually confirmed the initial presence of impurities (i.e., material that did not appear rope-like) as well as a darkening of the nanotubes post-treatment, suggesting less soot and increased porosity.

The researchers developed the new method while looking for quantitative methods for evaluating laser damage to nanotube coatings for next-generation NIST standards for optical power measurements. The responsivity of a prototype NIST standard increased 5 percent after the nanotube coating was cleaned.

* K.E. Hurst, A.C. Dillon, D.A. Keenan and J.H. Lehman. Cleaning of carbon nanotubes near the [pi]-plasmon resonance. Chemical Physics Letters, In Press, Corrected Proof. Available online 15 November 2006.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Laser-based Method Cleans Up Grubby Nanotubes." ScienceDaily. ScienceDaily, 26 December 2006. <www.sciencedaily.com/releases/2006/12/061223092629.htm>.
National Institute of Standards and Technology. (2006, December 26). Laser-based Method Cleans Up Grubby Nanotubes. ScienceDaily. Retrieved February 1, 2015 from www.sciencedaily.com/releases/2006/12/061223092629.htm
National Institute of Standards and Technology. "Laser-based Method Cleans Up Grubby Nanotubes." ScienceDaily. www.sciencedaily.com/releases/2006/12/061223092629.htm (accessed February 1, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, February 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Reuters - Innovations Video Online (Jan. 30, 2015) A nanosensor that mimics the oral effects and sensations of drinking wine has been developed by Danish and Portuguese researchers. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

RightThisMinute (Jan. 29, 2015) If your car has an "Insane Mode" then you know it&apos;s fast. Well, these unsuspecting passengers were in for one insane ride when they hit the button. Tesla cars are awesome. Video provided by RightThisMinute
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Senate Passes Bill for Keystone XL Pipeline

Senate Passes Bill for Keystone XL Pipeline

AP (Jan. 29, 2015) The Republican-controlled Senate has passed a bipartisan bill approving construction of the Keystone XL oil pipeline. (Jan. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins