Featured Research

from universities, journals, and other organizations

Uric Acid And Spinal Cord Injury Treatment: Novel Approach Holds Potential For Inhibiting Central Nervous System Damage

Date:
January 5, 2007
Source:
Rutgers, the State University of New Jersey
Summary:
Uric acid is commonly associated with the excruciatingly painful joint disease known as gout, but it can also play a crucial role in the treatment of spinal cord injury and other central nervous system disorders, such as stroke, multiple sclerosis and Parkinson's disease.

Uric acid is commonly associated with the excruciatingly painful joint disease known as gout, but it can also play a crucial role in the treatment of spinal cord injury and other central nervous system disorders, such as stroke, multiple sclerosis and Parkinson's disease, according to Rutgers' Bonnie Firestein.

Related Articles


Firestein, an associate professor of cell biology and neuroscience at Rutgers, The State University of New Jersey, and her laboratory team have reported their discovery in the Early View (online in advance of print) version of the journal Glia.

"In spinal cord injury, as well as stroke, two kinds of damage can occur," Firestein explained. "First there is the physical damage, but this is followed by secondary chemical damage to neurons [nerve cells] by compounds released in response to the trauma. We have found that uric acid can promote an early intervention step in combating this chemical damage through its action on astroglial cells."

Astroglial cells or astrocytes are specialized cells that support neuron function with nutrients and protective buffering.

In addition to the scientific achievement, the research study is a model for student involvement and education. Among the co-authors, postdoctoral associate Yangzhou Du is teaching Firestein more about astroglial cells, while he is learning about neurons from her. Christopher Chen was a Henry Rutgers Honors undergraduate student on the study, and Yuval Eisenberg, a laboratory technician; both now attend medical school. Another student, Chia-Yi Tseng is continuing her graduate studies in Firestein's laboratory.

Uric acid's effects on the health of neurons had been observed by other researchers, but the mechanics of how it confers protection has remained a mystery.

"It is interesting to note that people with gout never seem to develop multiple sclerosis," Firestein said. "In animal models of multiple sclerosis, the addition of uric acid reduces symptoms and improves prognosis. The same is true for one type of Parkinson's disease tested."

The Firestein team's breakthrough studies revealed that uric acid can stimulate astroglial cells to produce transporter proteins that carry harmful compounds away from neurons in jeopardy of chemical damage. This opens the door to identifying a unique drug target for new therapies.

Glutamate is a compound that under normal circumstances aids neurons in transmitting signals for cognitive functions in the brain, such as learning and memory. In the case of spinal cord injury or stroke where there is physical cell damage, however, an excess of glutamate is released and it accumulates around the remaining intact neurons, eventually choking them to death.

When Firestein's group added uric acid to a mixed culture of rat spinal cord neurons and astroglial cells, the production of the glutamate transporter EAAT-1 increased markedly. The challenge now is find the most effective strategy for increasing the production of the transporter, using drug therapies or other means.

Firestein said that a collaborative team of colleagues from Baylor College of Medicine and the University of Rochester Medical Center has devised one such strategy. With this team, Firestein will develop a line of stem cells that has been modified to generate astrocytes that produce large quantities of the EAAT-1 transporter. Adding these to an injury site, either alone or in combination with uric acid, holds great potential, she said.

The study was supported by a grant from the New Jersey Commission on Spinal Cord Research.


Story Source:

The above story is based on materials provided by Rutgers, the State University of New Jersey. Note: Materials may be edited for content and length.


Cite This Page:

Rutgers, the State University of New Jersey. "Uric Acid And Spinal Cord Injury Treatment: Novel Approach Holds Potential For Inhibiting Central Nervous System Damage." ScienceDaily. ScienceDaily, 5 January 2007. <www.sciencedaily.com/releases/2007/01/070103201438.htm>.
Rutgers, the State University of New Jersey. (2007, January 5). Uric Acid And Spinal Cord Injury Treatment: Novel Approach Holds Potential For Inhibiting Central Nervous System Damage. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2007/01/070103201438.htm
Rutgers, the State University of New Jersey. "Uric Acid And Spinal Cord Injury Treatment: Novel Approach Holds Potential For Inhibiting Central Nervous System Damage." ScienceDaily. www.sciencedaily.com/releases/2007/01/070103201438.htm (accessed October 24, 2014).

Share This



More Mind & Brain News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Academic Scandal Shocks UNC

Academic Scandal Shocks UNC

AP (Oct. 23, 2014) A scandal involving bogus classes and inflated grades at the University of North Carolina was bigger than previously reported, a new investigation found. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Working Mother Getaway: Beaches Turks & Caicos

Working Mother Getaway: Beaches Turks & Caicos

Working Mother (Oct. 22, 2014) Feast your eyes on this gorgeous family-friendly resort. Video provided by Working Mother
Powered by NewsLook.com
What Your Favorite Color Says About You

What Your Favorite Color Says About You

Buzz60 (Oct. 22, 2014) We all have one color we love to wear, and believe it or not, your color preference may reveal some of your character traits. In celebration of National Color Day, Krystin Goodwin (@kyrstingoodwin) highlights what your favorite colors may say about you. Video provided by Buzz60
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins