Featured Research

from universities, journals, and other organizations

Next Generation Of Screening Devices: System Detects Hazardous, Toxic Material In Concealed Packaging

Date:
January 24, 2007
Source:
Sandia National Laboratories
Summary:
Researchers at Sandia National Laboratories are developing the next generation of screening devices that will identify hazardous and toxic materials even if concealed by clothing and packaging materials.

Miniaturized device shown next to a dime.
Credit: Image courtesy of Sandia National Laboratories

It might not be science fiction much longer.

Researchers at Sandia National Laboratories are developing the next generation of screening devices that will identify hazardous and toxic materials even if concealed by clothing and packaging materials.

Working in the underutilized terahertz (THz) portion of the electromagnetic spectrum that lies between microwaves and infrared, a team of Labs scientists is harnessing Sandia's strengths in a variety of technical areas with the goal of building a highly integrated miniaturized terahertz transmitter-receiver (transceiver) that could make a number of applications possible.

The project, the Terahertz Microelectronics Transceiver Grand Challenge, is in its second of three years of funding through Sandia's internal Laboratory Directed Research and Development program.

Sandia is a National Nuclear Security Administration (NNSA) laboratory.

"The technology being developed in the Grand Challenge can be used to scan for items such as concealed weapons or materials, explosives, and weapons of mass destruction," says Mike Wanke, principal investigator. "In addition, we believe it will find applications in advanced communication systems and high-resolution radars. However, the infrastructure needed to move the terahertz technology from the laboratory to the field is unavailable right now. We want to develop that infrastructure and invent the necessary technologies."

Wanke says over the past three years, "the terahertz situation has begun to change dramatically, primarily due to the revolutionary development of terahertz quantum cascade lasers."

These tiny lasers are semiconductor sources of terahertz radiation capable of output powers in excess of 100 mW. Previously, such powers could only be obtained by molecular gas lasers occupying cubic meters and weighing more than 100 kg, or free electron lasers weighing tons and occupying entire buildings.

Quantum cascade laser-based systems can be less than the size of a baseball and powered from a nine-volt battery. Sandia has been a leader in developing this new technology and in collaboration with MIT is responsible for several world performance records for the lasers. Also, the Labs and its partners are the only US institutions that have demonstrated the ability to grow the unique semiconductor crystals such that they can be turned into operating terahertz quantum cascade lasers. The crystals are grown by Sandia research scientist John Reno, an expert in molecular beam epitaxy, a method of laying down layers of materials with atomic thicknesses onto substrates.

Sandia researchers spent the first year of the Grand Challenge using Sandia's unique strengths in integrated microelectronics and device physics to develop components that are now being combined to create an integrated THz microelectronic transceiver, a core enabling element.

The team is currently developing the receiver, doing systems tests and exploring packaging requirements. At the end of three years, the researchers expect to have an actual working prototype capable of detecting the materials and chemicals by reading distinctive molecular spectral "signatures."

"Most materials and chemicals have their own unique terahertz spectral signatures," Wanke says. "A terahertz transceiver system would be able to measure, for example, the signature of a gas and determine what it is."

"Atmospheric scientists and radio astronomers have spent years developing terahertz spectral signature databases to identify chemicals in nebula and planetary atmospheres," says Greg Hebner, program manager. "Even though the current devices are washing machine-sized, they are located in a few observatories, and one is even flying on a satellite. To address specific national security problems, we are working on reducing the size, weight, and power requirement as well as expanding the existing spectral databases."

In addition to monitoring for concealed hazardous materials, Mike believes a terahertz system can be used to monitor the air for toxic materials. Using air sampling technology developed at Sandia and other locations, hazardous vapors can be preconcentrated. Shining light from the quantum cascade laser through the concentrated sample provides a direct identification of the vapor. This technology can be used in conjunction with existing mass spectrometer-based systems to reduce false identifications.

"We are very optimistic about working in the terahertz electromagnetic spectrum," Wanke says. "This is an unexplored area and a lot of science can come out of it. We are just beginning to scratch the surface of what THz can do to improve national security."

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration. Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.


Story Source:

The above story is based on materials provided by Sandia National Laboratories. Note: Materials may be edited for content and length.


Cite This Page:

Sandia National Laboratories. "Next Generation Of Screening Devices: System Detects Hazardous, Toxic Material In Concealed Packaging." ScienceDaily. ScienceDaily, 24 January 2007. <www.sciencedaily.com/releases/2007/01/070122182920.htm>.
Sandia National Laboratories. (2007, January 24). Next Generation Of Screening Devices: System Detects Hazardous, Toxic Material In Concealed Packaging. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2007/01/070122182920.htm
Sandia National Laboratories. "Next Generation Of Screening Devices: System Detects Hazardous, Toxic Material In Concealed Packaging." ScienceDaily. www.sciencedaily.com/releases/2007/01/070122182920.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins