Featured Research

from universities, journals, and other organizations

Navigable Nanotransport: Direct Synthesis Of Hollow Nanoscopic Spheres With Tailored Surfaces

Date:
February 9, 2007
Source:
John Wiley & Sons, Inc.
Summary:
To accurately transport pharmaceutical agents to their specific target organs or cell types, you need a good carrier: Nanoscopic capsules with surface elements that can "recognize" the target in question could do the trick. Korean researchers led by Kimoon Kim have developed a very simple novel approach for the direct production of polymeric nanocapsules, they write in Angewandte Chemie.

To accurately transport pharmaceutical agents to their specific target organs or cell types, you need a good carrier: nanoscopic capsules with surface elements that can “recognize” the target in question could do the trick. To date, all methods for the production of such tiny capsules require preorganized structures or “molds” to shape hollow spheres and most methods require a lengthy, tedious synthetic or purification procedure.

Korean researchers led by Kimoon Kim have now developed a very simple novel approach for the direct production of polymeric nanocapsules. As described in the journal Angewandte Chemie, this method is generally applicable to any monomers as long as they have a flat core and multiple polymerizable groups at the periphery. Additionally, if building block are chosen that are able to bind specific (bio)molecules very tightly, the surface of the capsule can be easily decorated with species that are recognized by cells, showing the transporter the way to reach its goal, such as a tumor cell.

To demonstrate the power of their new concept, Kim and his team chose rigid, disk-shaped monomers equipped with a ring of special molecular “hooks” that can be activated by UV light. When a solution containing these disks is irradiated, the hooks grab on to each other, linking the disks into little, two-dimensional “patches” that in turn hook on to other patches. Once they reach a certain size, the patches bend around and close off to form hollow spheres, which can then be filled with guest molecules. The size of the spheres is very uniform and depends largely on the solvent in which the linking reaction takes place. The researchers used this method to produce capsules with diameters ranging from 50 to 600 nm.

The little disks used in this process deserve special consideration: Kim and his colleagues chose to use curcurbiturils. These disk-shaped molecules have a cavity at their center. As their shape resembles a hollowed-out pumpkin, this class of compounds was named after the plant genus of pumpkins, the cucurbitaceae. When the mini-pumpkins are linked together, they form an empty sphere with many tiny cavities on its surface. These “pockets” can be filled with certain nitrogen-containing biomolecules, such as spermine, in a very stable fashion.

The Korean researchers coupled spermine to the vitamin folic acid and packed these hybrid molecules into the capsule’s pockets. This gave them capsules with a surface covered with folic acid molecules. What for? Many tumors have a significantly increased number of folic acid receptors on the surfaces of their cells. The folic acid on the capsules docks into these sites and is brought into the interior of the cell. Here, the contents of the capsule, such as an antitumor drug or contrast agent, can be released to selectively attack the tumor or to make an unambiguous diagnosis.


Story Source:

The above story is based on materials provided by John Wiley & Sons, Inc.. Note: Materials may be edited for content and length.


Cite This Page:

John Wiley & Sons, Inc.. "Navigable Nanotransport: Direct Synthesis Of Hollow Nanoscopic Spheres With Tailored Surfaces." ScienceDaily. ScienceDaily, 9 February 2007. <www.sciencedaily.com/releases/2007/02/070206100549.htm>.
John Wiley & Sons, Inc.. (2007, February 9). Navigable Nanotransport: Direct Synthesis Of Hollow Nanoscopic Spheres With Tailored Surfaces. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2007/02/070206100549.htm
John Wiley & Sons, Inc.. "Navigable Nanotransport: Direct Synthesis Of Hollow Nanoscopic Spheres With Tailored Surfaces." ScienceDaily. www.sciencedaily.com/releases/2007/02/070206100549.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins