Featured Research

from universities, journals, and other organizations

Strain Has Major Effect On High-temp Superconductors

Date:
February 23, 2007
Source:
National Institute of Standards and Technology
Summary:
Just a little mechanical strain can cause a large drop in the maximum current carried by high-temperature superconductors, according to novel measurements carried out by NIST. The effect adds a new dimension to designing superconducting systems and it also provides a new tool that will help scientists probe the fundamental mechanism behind why these materials carry current with no resistance.

Magneto-optical image of magnetic fields within a YBCO superconductor showing electrically connected grains (yellow) and grain boundaries (green) that form barriers to superconducting currents. The large reversible effect of strain observed by NIST might be due to associated changes in grain boundaries, which raise the barriers to current flow and lower the material's current-carrying capability. (Credit: D.C. van der Laan/NIST)
Credit: D.C. van der Laan/NIST

Just a little mechanical strain can cause a large drop in the maximum current carried by high-temperature superconductors, according to novel measurements carried out by the National Institute of Standards and Technology (NIST). The effect, which is reversible, adds a new dimension to designing superconducting systems--particularly for electric power applications--and it also provides a new tool that will help scientists probe the fundamental mechanism behind why these materials carry current with no resistance.

The measurements, reported in Applied Physics Letters,* revealed a 40 percent reduction in critical current, the point at which superconductivity breaks down, at just 1 percent compressive strain. This effect can be readily accommodated in the engineering design of practical applications, NIST project leader Jack Ekin says, but knowing about it ahead of time will be important to the success of many large-scale devices. The effect was measured in three types of yttrium-barium-copper-oxide (YBCO), a brittle ceramic considered the best prospect for making low-cost, high-current, superconducting wires. The researchers developed a "four point" bend technique that enables studies of superconducting properties over a wide range of uniform strain at high current levels. The superconductor is soldered on top of a flexible metal beam, which is then bent up or down at both ends while the critical current is measured.

The discovery is the first major reversible strain effect found in practical high-temperature superconductors, which generally have been tested under smaller tensile strains only, or at strains so high they caused the material to break down permanently. The newly discovered effect is totally reversible and symmetric for both compressive and tensile (pushing and pulling) strains, suggesting it is intrinsic to the fundamental mechanism of superconductivity in YBCO.

The NIST team is now pursuing the possibility of using the effect as a new tool for probing the elusive mechanism underlying high-temperature superconductivity. The next step is to investigate how magnetic fields affect the strain effect, and several collaborations are under way with universities and other research organizations to study the interplay of the effect with other factors affecting high-temperature superconductivity. The research described in the new paper was supported in part by the U.S. Department of Energy.

* D.C. van der Laan and J.W. Ekin. Large intrinsic effect of axial strain on the critical current of high-temperature superconductors for electric power applications. Applied Physics Letters, 90, 052506, 2006. Posted online Jan. 31.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Strain Has Major Effect On High-temp Superconductors." ScienceDaily. ScienceDaily, 23 February 2007. <www.sciencedaily.com/releases/2007/02/070215180832.htm>.
National Institute of Standards and Technology. (2007, February 23). Strain Has Major Effect On High-temp Superconductors. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2007/02/070215180832.htm
National Institute of Standards and Technology. "Strain Has Major Effect On High-temp Superconductors." ScienceDaily. www.sciencedaily.com/releases/2007/02/070215180832.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins