Featured Research

from universities, journals, and other organizations

Frozen Lightning: NIST's New Nanoelectronic Switch

Date:
March 5, 2007
Source:
National Institute of Standards and Technology
Summary:
Researchers at NIST have demonstrated a prototype nanoscale electronic switch that can be built from self-assembled layers of organic molecules on silver wires. Potential applications range from a replacement technology for magnetic data storage to integrated circuit memory devices.

Researchers at the National Institute of Standards and Technology (NIST) have demonstrated a prototype nanoscale electronic switch that works like lightning--except for the speed. Their proof-of-concept experiments reported last week* demonstrate that nanoscale electrical switches can be built from self-assembled layers of organic molecules on silver wires. Potential applications range from a replacement technology for magnetic data storage to integrated circuit memory devices.

Silver would be a natural choice for nanoscale and microscale electrical contacts because of its high conductivity, but it has one notorious drawback. In an electric field, silver ions readily form silver "whiskers," tree-like branching growths of crystals that can short-out microelectronic devices.

Two NIST researchers have demonstrated that this can be a feature, not a bug, in an elegant experiment that uses this growth to make a nanoscale binary switch. In the experiment, an extremely fine silver wire is coated with a molecule that forms a self-assembled monolayer on the wire, typically some organic molecule with a sulfur group on one end to bond to the silver. An equally fine gold wire is laid crosswise to the silver wire and a small voltage is applied across the two wires.

When the voltage is increased to a critical level, silver ions form and quickly branch through the organic monolayer to the gold wire just like a lightning bolt--except solid. When a silver filament reaches the gold, it forms a short circuit, causing a dramatic change in conductance, which is easily detectable. Reversing the voltage retracts the filament and "opens" the switch.

As a candidate logic switch for nanoscale memory circuits and similar devices, the silver whisker switch has several attractive features:

  • The chemistry of the organic monolayer is not critical; the switch works with many different molecules and so can be used with many different self-assembled molecular electronics systems.
  • The crossed-wire structure is very simple to engineer and lends itself to large arrays of switches.
  • The difference between "on" and "off" is huge--electrical resistance ratios of a million or more. This makes it easier to reliably scale up the technology to very large arrays.

Problems to be overcome, according to the researchers, include volatility--the voltage has to be kept on to retain the switch state; slow switching speeds--about 10 kilohertz in the prototype; and a tendency of the switch to freeze permanently closed after a large number of cycles.

NIST has applied for a patent on the switch.

*J.M. Beebe and J.G. Kushmerick. Nanoscale switch elements from self-assembled monolayers on silver. Applied Physics Letters 90, 083117 (2007). Posted online Feb. 23, 2007.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Frozen Lightning: NIST's New Nanoelectronic Switch." ScienceDaily. ScienceDaily, 5 March 2007. <www.sciencedaily.com/releases/2007/03/070302110927.htm>.
National Institute of Standards and Technology. (2007, March 5). Frozen Lightning: NIST's New Nanoelectronic Switch. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2007/03/070302110927.htm
National Institute of Standards and Technology. "Frozen Lightning: NIST's New Nanoelectronic Switch." ScienceDaily. www.sciencedaily.com/releases/2007/03/070302110927.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins