Featured Research

from universities, journals, and other organizations

New Nanoscale Engineering Breakthrough Points To Hydrogen-powered Vehicles

Date:
March 6, 2007
Source:
Argonne National Laboratory
Summary:
Researchers at the U.S. Department of Energy's Argonne National Laboratory have developed an advanced concept in nanoscale catalyst engineering -- a combination of experiments and simulations that will bring polymer electrolyte membrane fuel cells for hydrogen-powered vehicles closer to massive commercialization.

Research by Nenad Markovic (left) and Vojislav Stamenkovic of Argonne has developed an advanced concept in nanoscale catalyst engineering that could help commercialize hyrdogen-powered vehicles on a large scale.
Credit: Image courtesy of DOE/Argonne National Laboratory

Researchers at the U.S. Department of Energy's Argonne National Laboratory have developed an advanced concept in nanoscale catalyst engineering – a combination of experiments and simulations that will bring polymer electrolyte membrane fuel cells for hydrogen-powered vehicles closer to massive commercialization.

Related Articles


The results of their findings identify a clear trend in the behavior of extended and nanoscale surfaces of platinum-bimetallic alloy. Additionally, the techniques and concepts derived from the research program are expected to make overarching contributions to other areas of science well beyond the focus on electrocatalysis.

The Argonne researchers, Nenad Markovic and Vojislav Stamenkovic, published related results last month in Science and this month in Nature Materials on the behavior of single crystal and polycrystalline platinum alloy surfaces. The researchers discovered that the nanosegregated platinum-nickel alloy surface has unique catalytic properties, opening up important new directions for the development of active and stable practical cathode catalysts in fuel cells.

These scientific accomplishments together provide a solid foundation for the development of hydrogen-powered vehicles, as basic research brings value of society today by helping to lay the foundation for tomorrow's technological breakthroughs. "Understanding catalysis is a grand challenge of nanoscience that is now coming within reach," said George Crabtree, director of Argonne's Materials Science Division. "The systematic work that Voya and Nenad are doing is a major step toward transforming catalysis from an empirical art to a fundamental science."

Their experiments and approach sought to substantially improve and reduce platinum loading as the oxygen-reduction catalyst. The research identified a fundamental relationship in electrocatalytic trends on surfaces between the experimentally determined surface electronic structure (the d -band centre) and activity for the oxygen-reduction reaction. This relationship exhibits "volcano-type" behavior, where the maximum catalytic activity is governed by a balance between adsorption energies of reactive intermediates and surface coverage by spectator (blocking) species.

The electrocatalytic trends established for extended surfaces explain the activity pattern of nanocatalysts and provide a fundamental basis for the enhancement of cathode catalysts. By combining experiments with simulations in the quest for surfaces with desired activity, the researchers developed an advanced concept in nanoscale catalyst engineering.

"In the past, theoretical connections have been suggested between electronic behavior and catalytic activity," explained Markovic. "Our work represents the first time that the connections have been identified experimentally. For us, this development constitutes the beginning of more breakthrough advances in nanocatalysts."

According to Stamenkovic, "Our study demonstrates the potential of new analytical tools for characterizing nanoscale surfaces in order to fine tune their properties in a desired direction. We have identified a cathode surface that is capable of achieving and even exceeding the target for catalytic activity with improved stability. This discovery sets a new bar for catalytic activity of the cathodic reaction in fuel cells."

Through continued research combining nanoscale fabrication, electrochemical characterization and numerical simulation a new generation of multi-metallic systems with engineered nanoscale surfaces is on the horizon. Argonne's Center for Nanoscale Materials, Advanced Photon Source and Electron Microscopy Center will enable some of this research.

"We have got crucial support from Argonne management to set up the new labs and launch research directions, which would establish Argonne as a leading center in basic sciences related to energy conversion." said Stamenkovic.

Their lab includes a custom built three-chamber UHV system equipped with the state-of-the-art surface sensitive tools, including Low Energy Ion Scattering Spectroscopy (LEISS), Auger Electron Spectroscopy (AES), angle resolved X-ray photoemission spectroscopy (XPS with monochromator), ultraviolet photoelectron spectroscopy

(UPS), Low Energy Electron Diffraction (LEED) optics, sputtering guns, thermal evaporators, dual hemispherical analyzers, and chamber with scanning tunneling microscopy (STM) and atomic force microscopy AFM. All three chambers are connected to each other but they can also work as independent chambers, making it possible to transfer samples from one to the other unit in order to get detailed surface characterization or to make desirable surface modification.

"We hope that this research program will lead the nation to more secure energy independence and a cleaner environment for future generations," Markovic said.

Collaborators on the research were Bongjin Mun and Philip Ross at DOE's Lawrence Berkeley National Laboratory, Matthias Arenz and Karl Mayrhofer from Technical University of Munich, Christopher Lucas from the University of Liverpool and Guofeng Wang from the University of South Carolina.

This research was funded by DOE's Office of Basic Energy Sciences and by General Motors.

The nation's first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Since 1990, Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America's scientific leadership and prepare the nation for the future. Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.


Story Source:

The above story is based on materials provided by Argonne National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Argonne National Laboratory. "New Nanoscale Engineering Breakthrough Points To Hydrogen-powered Vehicles." ScienceDaily. ScienceDaily, 6 March 2007. <www.sciencedaily.com/releases/2007/03/070305140927.htm>.
Argonne National Laboratory. (2007, March 6). New Nanoscale Engineering Breakthrough Points To Hydrogen-powered Vehicles. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2007/03/070305140927.htm
Argonne National Laboratory. "New Nanoscale Engineering Breakthrough Points To Hydrogen-powered Vehicles." ScienceDaily. www.sciencedaily.com/releases/2007/03/070305140927.htm (accessed October 30, 2014).

Share This



More Matter & Energy News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Lowe's Testing Robot Sales Assistants in California Store

Lowe's Testing Robot Sales Assistants in California Store

Buzz60 (Oct. 29, 2014) Lowe’s is testing out what it’s describing as a robotic shopping assistant in one of its Orchard Supply Hardware Stores in California. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins