Featured Research

from universities, journals, and other organizations

Combating Friction And Stiction In Electronic Devices

Date:
March 19, 2007
Source:
University Of Arkansas
Summary:
Micro-electro-mechanical systems, popularly referred to as MEMS, in small electronic devices often fail because of adhesion and stiction - the attractive force between the surfaces of interacting parts. University of Arkansas researchers have developed a surface-topography engineering method that reduces these forces and will help microscopic parts interact and function smoothly.

Nanoscale Bumps.
Credit: Image courtesy of University Of Arkansas

Micro-electro-mechanical systems, popularly referred to as MEMS, in small electronic devices often fail because of adhesion and stiction - the attractive force between the surfaces of interacting parts. University of Arkansas researchers have developed a surface-topography engineering method that reduces these forces and will help microscopic parts interact and function smoothly.

Related Articles


"There are two approaches to address adhesion and stiction issues in MEMS devices," said Min Zou, assistant professor of mechanical engineering. "One is chemistry - applying chemicals on surfaces to weaken the forces. The other is topography engineering. Our approach was simple - we engineered nanoscale bumps to reduce the contact area between surfaces."

The goal of the project was to create a hydrophobic surface. Determined by a popular engineering benchmark known as the water-contact angle, hydrophobicity describes the process of water "beading up" or turning into a ball, such as rain does on an automobile windshield that has been treated with chemicals. The water-contact angle is the measurement used to describe the extent to which water beads. A water-contact angle greater than 90 degrees is considered hydrophobic, and any angle greater than 150 degrees is considered superhydrophobic. With a water-contact angle of approximately 180 degrees, beads represent a near-perfect sphere with only minimal contact on surfaces.

Using only topography-engineering methods, Zou's team achieved a water-contact angle as high as 137 degrees on silicon. No other researcher has achieved a higher water-contact angle without the use of chemicals. Zou's team also conducted a study that combined the surface-topography engineering method with chemicals. That study achieved a water-contact angle greater than 150 degrees, and thus produced a superhydrophobic surface.

Zou's team started with amorphous silicon - silicon that does not exhibit any crystalline form or shape. The researchers used aluminum to induce crystallization, which manifested as nano- or microcrystallites to form the textured surfaces. The researchers induced crystallization by annealing - a process of heating and cooling - the amorphous silicon in a conventional furnace.

"We demonstrated that the surface area covered by nanotextures can be controlled by changing annealing temperature and duration," Zou said.

In addition to electronic devices, the research applies to biomedical devices. It also advances the understanding of tribology, which is the study of friction, wear and lubrication of interacting surfaces in relative motion, such as gears, bearings and head-disk interfaces in computer hard drives.

Zou presented the research findings in January at the International Conference on Integration and Commercialization of Micro and Nano-systems organized by the American Society of Mechanical Engineers. The research was awarded the conference's best paper award.


Story Source:

The above story is based on materials provided by University Of Arkansas. Note: Materials may be edited for content and length.


Cite This Page:

University Of Arkansas. "Combating Friction And Stiction In Electronic Devices." ScienceDaily. ScienceDaily, 19 March 2007. <www.sciencedaily.com/releases/2007/03/070319102154.htm>.
University Of Arkansas. (2007, March 19). Combating Friction And Stiction In Electronic Devices. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2007/03/070319102154.htm
University Of Arkansas. "Combating Friction And Stiction In Electronic Devices." ScienceDaily. www.sciencedaily.com/releases/2007/03/070319102154.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Inspectors Found Faulty Work Before NYC Blast

Inspectors Found Faulty Work Before NYC Blast

AP (Mar. 27, 2015) An hour before an apparent gas explosion sent flames soaring and debris flying at a Manhattan apartment building, injuring 19 people, utility company inspectors decided the work being done there was faulty. (March 27) Video provided by AP
Powered by NewsLook.com
Facebook Building Plane-Sized Drones For Global Internet

Facebook Building Plane-Sized Drones For Global Internet

Newsy (Mar. 27, 2015) Facebook on Thursday revealed more details about its Internet-connected drone project. The drone is bigger than a 737, but lighter than a car. Video provided by Newsy
Powered by NewsLook.com
Robot Returns from International Space Station and Sets Two Guinness World Records

Robot Returns from International Space Station and Sets Two Guinness World Records

Reuters - Light News Video Online (Mar. 27, 2015) The companion robot "Kirobo" returns to earth from the International Space Station and sets two Guinness World Records. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com
Residents Witness Building Explosion, Collapse

Residents Witness Building Explosion, Collapse

AP (Mar. 26, 2015) Witnesses recount the sites and sounds of a massive explosion and subsequent building collapse in the heart of Manhattan&apos;s trendy East Village on Thursday. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins