Featured Research

from universities, journals, and other organizations

Spintronics: Making Computers Smaller and Faster

Date:
March 27, 2007
Source:
Virginia Commonwealth University
Summary:
Researchers have made an important advance in the emerging field of 'spintronics' that may one day usher in a new generation of smaller, smarter, faster computers, sensors and other devices, according to findings reported in the journal Nature Nanotechnology.

Researchers have made an important advance in the emerging field of 'spintronics' that may one day usher in a new generation of smaller, smarter, faster computers, sensors and other devices, according to findings reported in today's issue of the journal Nature Nanotechnology.

Related Articles


The research field of 'spintronics' is concerned with using the 'spin' of an electron for storing, processing and communicating information.

The research team of electrical and computer engineers from the Virginia Commonwealth University's School of Engineering and the University of Cincinnati examined the 'spin' of electrons in organic nanowires, which are ultra-small structures made from organic materials. These structures have a diameter of 50 nanometers, which is 2,000 times smaller than the width of a human hair. The spin of an electron is a property that makes the electron act like a tiny magnet. This property can be used to encode information in electronic circuits, computers, and virtually every other electronic gadget.

"In order to store and process information, the spin of an electron must be relatively robust. The most important property that determines the robustness of spin is the so-called 'spin relaxation time,' which is the time it takes for the spin to 'relax.' When spin relaxes, the information encoded in it is lost. Therefore, we want the spin relaxation time to be as long as possible," said corresponding author Supriyo Bandyopadhyay, Ph.D., a professor in the Department of Electrical and Computer Engineering at the VCU School of Engineering.

"Typically, the spin relaxation time in most materials is a few nanoseconds to a few microseconds. We are the first to study spin relaxation time in organic nanostructures and found that it can be as long as a second. This is at least 1000 times longer than what has been reported in any other system," Bandyopadhyay said.

The team fabricated their nanostructures from organic molecules that typically contain carbon and hydrogen atoms. In these materials, spin tends to remain relatively isolated from perturbations that cause it to relax. That makes the spin relaxation time very long.

The VCU-Cincinnati team was also able to pin down the primary spin relaxation mechanism in organic materials, which was not previously known. Specifically, they found that the principal spin relaxation mechanism is one where the spin relaxes when the electron collides with another electron, or any other obstacle it encounters when moving through the organic material. This knowledge can allow researchers to find means to make the spin relaxation time even longer.

"The organic spin valves we developed are based on self-assembled structures grown on flexible substrates which could have a tremendous impact on the rapidly developing field of plastic electronics, such as flexible panel displays," said Marc Cahay, Ph.D., a professor in the Department of Electrical and Computer Engineering at the University of Cincinnati. "If the organic compounds can be replaced by biomaterials, this would also open news areas of research for biomedical and bioengineering applications, such as ultra-sensitive sensors for early detection of various diseases."

"These are very exciting times to form interdisciplinary research teams and bring back the excitement about science and engineering in students at a very young age to raise them to become the future generations of nanopioneers," Cahay said.

The fact that the spin relaxation time in organic materials is exceptionally long makes them the ideal host materials for spintronic devices. Organic materials are also inexpensive, and therefore very desirable for making electronic devices.

The VCU-Cincinnati research advances nanotechnology, which is a rapidly growing field where engineers are developing techniques to create technical tools small enough to work at the atomic level. Additionally, by using nanoscale components researchers have the ability to pack a large number of devices within a very small area. The devices themselves are just billionths of a meter; and trillions of them can be packed into an area the size of a postage stamp. Furthermore, they consume very little energy when they process data.

The work is supported by the U.S. Air Force Office of Scientific Research and the National Science Foundation.


Story Source:

The above story is based on materials provided by Virginia Commonwealth University. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Commonwealth University. "Spintronics: Making Computers Smaller and Faster." ScienceDaily. ScienceDaily, 27 March 2007. <www.sciencedaily.com/releases/2007/03/070319174553.htm>.
Virginia Commonwealth University. (2007, March 27). Spintronics: Making Computers Smaller and Faster. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2007/03/070319174553.htm
Virginia Commonwealth University. "Spintronics: Making Computers Smaller and Faster." ScienceDaily. www.sciencedaily.com/releases/2007/03/070319174553.htm (accessed October 25, 2014).

Share This



More Computers & Math News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) — Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Microsoft Riding High On Strong Surface, Cloud Performance

Microsoft Riding High On Strong Surface, Cloud Performance

Newsy (Oct. 24, 2014) — Microsoft's Q3 earnings showed its tablets and cloud services are really hitting their stride. Video provided by Newsy
Powered by NewsLook.com
The Best Apps to Organize Your Life

The Best Apps to Organize Your Life

Buzz60 (Oct. 23, 2014) — Need help organizing your bills, schedules and other things? Ko Im (@konakafe) has the best apps to help you stay on top of it all! Video provided by Buzz60
Powered by NewsLook.com
Nike And Apple Team Up To Create Wearable ... Something

Nike And Apple Team Up To Create Wearable ... Something

Newsy (Oct. 23, 2014) — For those looking for wearable tech that's significantly less nerdy than Google Glass, Nike CEO Mark Parker says don't worry, It's on the way. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins