Featured Research

from universities, journals, and other organizations

Linear Arrays Of Nanotubes Offer Path To High-performance Electronics

Date:
April 2, 2007
Source:
University of Illinois at Urbana-Champaign
Summary:
Despite the attractive electrical properties and physical features of single-walled carbon nanotubes, incorporating them into scalable integrated circuits has proven to be a challenge because of difficulties in manipulating and positioning these molecular scale objects and in achieving sufficient current outputs. Researchers have now developed an approach that uses dense arrays of aligned and linear nanotubes as a thin-film semiconductor material suitable for integration into electronic devices.

Scanning electron microscope image of a pattern of aligned, linear single-walled carbon nanotubes formed by chemical vapor deposition growth on a quartz substrate. The bright horizontal stripes correspond to the regions of iron catalyst.
Credit: John A. Rogers

Despite the attractive electrical properties and physical features of single-walled carbon nanotubes, incorporating them into scalable integrated circuits has proven to be a challenge because of difficulties in manipulating and positioning these molecular scale objects and in achieving sufficient current outputs.

Related Articles


Now, researchers at the University of Illinois, Lehigh University and Purdue University have developed an approach that uses dense arrays of aligned and linear nanotubes as a thin-film semiconductor material suitable for integration into electronic devices.

The nanotube arrays can be transferred to plastic and other unusual substrates for applications such as flexible displays, structural health monitors and heads-up displays. The arrays also can be used to enhance the performance of devices built with conventional silicon-based chip technology.

"The aligned arrays represent an important step toward large-scale integrated nanotube electronics," said John A. Rogers, a Founder Professor of Materials Science and Engineering at Illinois, and corresponding author of a paper accepted for publication in the journal Nature Nanotechnology, and posted on its Web site.

To create nanotube arrays, the researchers begin with a wafer of single-crystal quartz, on which they deposit thin strips of iron nanoparticles. The iron acts as a catalyst for the growth of carbon nanotubes by chemical vapor deposition. As the nanotubes grow past the iron strips, they lock onto the quartz crystal, which then aligns their growth.

The resulting linear arrays consist of hundreds of thousands of nanotubes, each approximately 1 nanometer in diameter (a nanometer is 1 billionth of a meter), and up to 300 microns in length (a micron is 1 millionth of a meter). The nanotubes are spaced approximately 100 nanometers apart.

The arrays function as an effective thin-film semiconductor material in which charge moves independently through each of the nanotubes. In this configuration, the nanotubes can be integrated into electronic devices in a straightforward fashion by conventional chip-processing techniques.

A typical device incorporates approximately 1,000 nanotubes, and can produce current outputs 1,000 times higher than those of previously reported devices that incorporate just a single nanotube. Many devices can be built from each array, with good device-to-device uniformity. Detailed theoretical analysis of these unusual devices reveals many aspects of their operation.

Using the arrays, the researchers built and tested a number of transistors and logic gates, and compared the properties of nanotube arrays with those of individual nanotubes.

"This is the first study that shows properties in scalable device configurations that approach the intrinsic properties of the tubes themselves, as inferred from single-tube studies," said Rogers, who also is a researcher at the university's Beckman Institute.

Nanotube arrays aren't likely to replace silicon, Rogers said, but could be added to a silicon chip and exploited for particular purposes, such as higher speed operation, higher power capacity and linear behavior for enhanced functionality. They can also be used in applications such as flexible devices, for which silicon is not well suited.

"Nanotubes have shown potential in the past, but there hasn't been a clear path from science to technology," said Moonsub Shim, a professor of materials science and engineering at Illinois, and a co-author of the paper. "Our work seeks to bridge this gap."

With Rogers and Shim, co-authors of the paper are postdoctoral research associate Seong Jun Kang and graduate students Coskun Kocabas and Taner Ozel, all at Illinois; electrical and computer engineering professor Muhammad A. Alam and graduate student Ninad Pimparkar at Purdue, and physics professor Slava V. Rotkin at Lehigh.

The National Science Foundation and the U.S. Department of Energy funded the work.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Linear Arrays Of Nanotubes Offer Path To High-performance Electronics." ScienceDaily. ScienceDaily, 2 April 2007. <www.sciencedaily.com/releases/2007/03/070326095731.htm>.
University of Illinois at Urbana-Champaign. (2007, April 2). Linear Arrays Of Nanotubes Offer Path To High-performance Electronics. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2007/03/070326095731.htm
University of Illinois at Urbana-Champaign. "Linear Arrays Of Nanotubes Offer Path To High-performance Electronics." ScienceDaily. www.sciencedaily.com/releases/2007/03/070326095731.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Who Will Failed Nuclear Talks Hurt Most?

Who Will Failed Nuclear Talks Hurt Most?

Reuters - Business Video Online (Nov. 25, 2014) With no immediate prospect of sanctions relief for Iran, and no solid progress in negotiations with the West over the country's nuclear programme, Ciara Lee asks why talks have still not produced results and what a resolution would mean for both parties. Video provided by Reuters
Powered by NewsLook.com
Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Reuters - Innovations Video Online (Nov. 25, 2014) A virtual flying enthusiast converts parts of a written-off Airbus aircraft into a working flight simulator in his northern Slovenian home. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins