Featured Research

from universities, journals, and other organizations

Switching Genes To Overdrive Improves Muscular Dystrophy Symptoms In Mice

Date:
April 2, 2007
Source:
Dana-Farber Cancer Institute
Summary:
Scientists have shown in a laboratory study that revving up a crucial set of muscle genes counteracts the damage caused by a form of muscular dystrophy.

Scientists at Dana-Farber Cancer Institute have shown in a laboratory study that revving up a crucial set of muscle genes counteracts the damage caused by a form of muscular dystrophy.

Related Articles


Reporting in the April 1 issue of Genes and Development, the researchers demonstrated that manipulating a genetic molecular switch increased the genes' activity in the muscles of mice with Duchenne muscular dystrophy, slowing the disease-associated muscle wasting. The authors caution that they have not yet found a way to tweak the switch, known as PGC-1alpha, in humans.

"I think that if we could elevate the levels of PGC-1alpha in the muscles of patients with Duchenne muscular dystrophy, it is likely that we could slow or reduce the course of the disease," said Bruce Spiegelman, PhD, the Dana-Farber researcher who led the team along with Christoph Handschin, PhD, formerly of Dana-Farber and now at the University of Zurich. Other authors are from the University of Iowa College of Medicine.

Duchenne muscular dystrophy (DMD) is the most common type of muscular dystrophy in children, occurring once in about every 5,000 live births of boys, and is ultimately fatal. The average age of death is the mid-teens, and most patients die by their 30s. In the United States, about 400 to 600 boys are born each year with DMD or Becker Muscular Dystrophy, a milder form of the disease. The cause is a mutation, either inherited or occurring spontaneously, that affects a muscle protein called dystrophin.

Spiegelman, whose laboratory discovered PGC-1alpha in 1998, led the new study which was aimed at determining whether increasing levels of PGC-1alpha in the muscles of mice could increase the activity of genes that are known to behave abnormally in muscular dystrophy.

PGC-1alpha is known as a "transcriptional coactivator" that functions as a switch, or perhaps more accurately, like a light dimmer that increases or decreases the activity of genes under its control. Exercising a muscle raises PGC-1alpha levels, causing the formation of more mitochondria, the chemical power plants that create energy in cells.

PGC-1alpha is also required for the normal operation of genes that control the development of neuromuscular junctions (NMJ) -- sites on muscle fibers where nerves attach and signal the fibers to contract. Part of the reason that exercise builds stronger muscles is that it increases PGC-1alpha activity. Conversely, disease or lack of exercise reduces PGC-1alpha activity, causing a loss of NMJ function and weakening, or atrophying, of muscles.

Spiegelman's team had previously bred a strain of mice with higher-than-normal levels of PGC-1alpha in their muscles. Also available for the research was a mouse model of Duchenne muscular dystrophy, the MDX mouse. In the new experiment, the scientists bred male high-PGC-1alpha mice with female MDX mice (the muscular dystrophy gene is carried by females in mouse and in humans.) As a result, the offspring of these matings had muscular dystrophy but also had elevated PGC-1alpha. Using exercise and chemical tests, the researchers compared muscle function in the offspring with MDX mice having no additional PGC-1alpha.

Both sets of rodents were run on a treadmill for one hour, then again 24 hours later. Normal mice completed the runs easily on both days, while untreated MDX rodents were exhausted halfway through each run. The MDX mice with increased PGC-1alpha activity performed almost as well as normal mice on the first day; their performances decreased on the second day, but they still did better than the untreated MDX mice on both runs.

The exercise tests and microscopic and chemical examinations of the muscles showed that boosting PGC-1alpha caused "a clear and substantial improvement in the structure and function of skeletal muscle in this disease model," the scientists wrote.

The studies were supported by grants from the National Institutes of Health.


Story Source:

The above story is based on materials provided by Dana-Farber Cancer Institute. Note: Materials may be edited for content and length.


Cite This Page:

Dana-Farber Cancer Institute. "Switching Genes To Overdrive Improves Muscular Dystrophy Symptoms In Mice." ScienceDaily. ScienceDaily, 2 April 2007. <www.sciencedaily.com/releases/2007/04/070402102250.htm>.
Dana-Farber Cancer Institute. (2007, April 2). Switching Genes To Overdrive Improves Muscular Dystrophy Symptoms In Mice. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2007/04/070402102250.htm
Dana-Farber Cancer Institute. "Switching Genes To Overdrive Improves Muscular Dystrophy Symptoms In Mice." ScienceDaily. www.sciencedaily.com/releases/2007/04/070402102250.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins