Featured Research

from universities, journals, and other organizations

Model Helps Researchers 'See' Brain Development; Could Facilitate Early Detection Of Autism

Date:
April 13, 2007
Source:
Massachusetts Institute of Technology
Summary:
Large mammals -- humans, monkeys and even cats -- have brains with a somewhat mysterious feature: the outermost layer has a folded surface. Understanding the functional significance of these folds is one of the big open questions in neuroscience. Now researchers have developed a tool that could aid such studies by helping "see" how those folds develop and decay in the cerebral cortex.

Larger-scale folds develop the fastest in premature (born more than seven weeks early) infants (top), while medium-scale folds develop the fastest in older premature infants, born between seven and two weeks early (middle). In older infants and children, fine folds develop the most quickly across the brain surface (bottom).
Credit: Peng Yu

Large mammals--humans, monkeys, and even cats--have brains with a somewhat mysterious feature: The outermost layer has a folded surface. Understanding the functional significance of these folds is one of the big open questions in neuroscience.

Now a team led by MIT, Massachusetts General Hospital and Harvard Medical School researchers has developed a tool that could aid such studies by helping researchers "see" how those folds develop and decay in the cerebral cortex.

By applying computer graphics techniques to brain images collected using magnetic resonance (MR) imaging, they have created a set of tools for tracking and measuring these folds over time. Their resulting model of cortical development may serve as a biomarker, or biological indicator, for early diagnosis of neurological disorders such as autism.

The researchers describe their model and analysis in the April issue of IEEE Transactions on Medical Imaging.

Peng Yu, a graduate student in the Harvard-MIT Division of Health Sciences and Technology (HST), is first author on the paper. The work was led by co-author Bruce Fischl, associate professor of radiology at Harvard Medical School, research affiliate with the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) and HST, and director of the computational core at the HST Martinos Center for Biomedical Imaging at Massachusetts General Hospital (MGH).

The team started with a collection of MR images from 11 developing brains, provided by Ellen Grant, chief of pediatric radiology at MGH and the Martinos Center. Of the subjects scanned, eight were newborn, mostly premature babies ranging from about 30 to 40 weeks of gestational age, and three were from children aged two, three and seven years. Grant scanned these infants and children to assess possible brain injury and found no neural defects. Later, she also consulted with Fischl's team to ensure that their analyses made sense clinically.

"We can't open the brain and see by eye, but the cool thing we can do now is see through the MR machine," a technology that is much safer than earlier techniques such as X-ray imaging, said Yu.

The first step in analyzing these images is to align their common anatomical structures, such as the "central sulcus," a fold that separates the motor cortex from the somatosensory cortex. Yu applied a technique developed by Fischl to perform this alignment.

The second step involves modeling the folds of the brain mathematically in a way that allows the researchers to analyze their changes over time and space.

The original brain scan is then represented computationally with points. Charting each baby's brain requires about 130,000 points per hemisphere. Yu decomposed these points into a representation using just 42 points that shows only the coarsest folds. By adding more points, she created increasingly finer-grained domains of smaller, higher-resolution folds.

Finally, Yu modeled biological growth using a technique recommended by Grant that allowed her to identify the age at which each type of fold, coarse or fine, developed, and how quickly.

She found that the coarse folds, equivalent to the largest folds in a crumpled piece of paper, develop earlier and more slowly than fine-grained folds.

In addition to providing insights into cortical development, the team is now comparing the images to those being collected from patients with autism. "We now have some idea of what normal development looks like. The next step is to see if we can detect abnormal development in diseases like autism by looking at folding differences," said Fischl. This tool may also be used to shed light on other neurological diseases such as schizophrenia and Alzheimer's disease.

In addition to Yu, Grant and Fischl, co-authors on the paper are postdoctoral associate Yuan Qi and Assistant Professor Polina Golland of CSAIL (Golland also holds an appointment in MIT's Department of Electrical Engineering and Computer Science); Xiao Han of CMS Inc.; Florent Segonne of Certis Laboratory; Rudolph Pienaar, Evelina Busa, Jenni Pacheco and Nikos Makris of the Martinos Center; and Randy L. Buckner of Harvard University and the Martinos Center.

The research was supported by the National Center for Research Resources, the National Institutes of Health, the Washington University Alzheimer's Disease Research Center, and the Mental Illness and Neuroscience Discovery (MIND) Institute. It is part of the National Alliance for Medical Image Computing, funded by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Model Helps Researchers 'See' Brain Development; Could Facilitate Early Detection Of Autism." ScienceDaily. ScienceDaily, 13 April 2007. <www.sciencedaily.com/releases/2007/04/070409121649.htm>.
Massachusetts Institute of Technology. (2007, April 13). Model Helps Researchers 'See' Brain Development; Could Facilitate Early Detection Of Autism. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2007/04/070409121649.htm
Massachusetts Institute of Technology. "Model Helps Researchers 'See' Brain Development; Could Facilitate Early Detection Of Autism." ScienceDaily. www.sciencedaily.com/releases/2007/04/070409121649.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins