Featured Research

from universities, journals, and other organizations

Quantum Dot Lasers: One Dot Makes All The Difference

Date:
April 13, 2007
Source:
National Institute of Standards and Technology
Summary:
Physicists have built micron-sized solid-state lasers in which a single quantum dot can play a dominant role in the device's performance. These highly efficient optical devices could one day produce the ultimate low-power laser for telecommunications, optical computing and optical standards.

Microdisk lasers used in experiments by NIST, Stanford University and Northwestern University are made by layering indium arsenide on top of gallium arsenide and etching out disks about 1.8 micrometers across on pillars of gallium arsenide. Scanning tunneling microscope image (inset) shows some of the approximately 130 "quantum dot" islands of indium arsenide in each disk.
Credit: NIST

Physicists at the National Institute of Standards and Technology (NIST) and Stanford and Northwestern Universities have built micrometer-sized solid-state lasers in which a single quantum dot can play a dominant role in the device's performance. Correctly tuned, these microlasers switch on at energies in the sub-microwatt range. These highly efficient optical devices could one day produce the ultimate low-power laser for telecommunications, optical computing and optical standards.

How small can a laser get? The typical laser has a vast number of emitters--electronic transitions in an extended crystal, for example--confined within an optical cavity. Light trapped and reflecting back and forth in the cavity triggers the cascade of coherent, laser light. But about a decade ago, researchers made the first quantum dot laser.

Quantum dots are nanoscale regions in a crystal structure that can trap electrons and "holes," the charge carriers that transport current in a semiconductor. When a trapped electron-hole pair recombines, light of a specific frequency is emitted. Quantum-dot lasers have attracted attention as possible embedded communications devices not only for their small size, but because they switch on with far less power then even the solid-state lasers used in DVD players.

In recent experiments*, the NIST-Stanford-Northwestern team made "microdisk" lasers by layering indium arsenide on top of gallium arsenide. The mismatch between the different-sized atomic lattices forms indium arsenide islands, about 25 nanometers across, that act as quantum dots. The physicists then etched out disks, 1.8 micrometers across and containing about 130 quantum dots, sitting atop gallium arsenide pillars.

The disks are sized to create a "whispering gallery" effect in which infrared light at about 900 nanometers circulates around the disk's rim. That resonant region contains about 60 quantum dots, and can act as a laser. It can be stimulated by using light at a non-resonant frequency to trigger emission of light. But the quantum dots are not all identical. Variations from one dot to another mean that their emission frequencies are slightly different, and also change slightly with temperature as they expand or contract. At any one time, the researchers report, at most one quantum dot--and quite possibly none--has its characteristic frequency matching that of the optical resonance.

Nevertheless, as they varied a disk's temperature from less than 10K to 50K, the researchers always observed laser emission, although they needed to supply different amounts of energy to turn it on. At all temperatures, they say, some quantum dots have frequencies close enough to the disk's resonance that laser action will happen. But at certain temperatures, the frequency of a single dot coincided exactly with the disk's resonance, and laser emission then needed only the smallest stimulation. It's not quite a single-dot laser, but it's a case where one quantum dot effectively runs the show.

*Z.G. Xie, S. Gφtzinger, W. Fang, H. Cao and G.S. Solomon. Influence of a single quantum dot state on the characteristics of a microdisk laser. Physical Review Letters, 98, 117401 (2007).


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Quantum Dot Lasers: One Dot Makes All The Difference." ScienceDaily. ScienceDaily, 13 April 2007. <www.sciencedaily.com/releases/2007/04/070412163752.htm>.
National Institute of Standards and Technology. (2007, April 13). Quantum Dot Lasers: One Dot Makes All The Difference. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2007/04/070412163752.htm
National Institute of Standards and Technology. "Quantum Dot Lasers: One Dot Makes All The Difference." ScienceDaily. www.sciencedaily.com/releases/2007/04/070412163752.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) — 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins