Featured Research

from universities, journals, and other organizations

Radio Active Brown Dwarfs Are A New Class Of Pulsar

Date:
April 20, 2007
Source:
Royal Astronomical Society
Summary:
A study of brown dwarfs has revealed that these "failed stars" can possess powerful magnetic fields and emit lighthouse beams of radio waves thousands of times brighter than any detected from the Sun. The brown dwarfs are behaving like pulsars, one of the most exotic types of object in our Universe.

Artist's impression of a brown dwarf with "super-aurorae" at its magnetic poles, causing the pulsed radio emission.
Credit: Copyright National University of Ireland, Armagh Observatory, National Radio Astronomy Observatory, United States Naval Observatory & Vatican Observatory, Arizona

A study of brown dwarfs has revealed that these "failed stars" can possess powerful magnetic fields and emit lighthouse beams of radio waves thousands of times brighter than any detected from the Sun. The brown dwarfs are behaving like pulsars, one of the most exotic types of object in our Universe.

Gregg Hallinan of the National University of Ireland, Galway, who is presenting the discovery at the RAS National Astronomy Meeting in Preston on 18th April, said, "Brown dwarfs tend to be seen as a bit boring - the cinders of the galaxy. Our research shows that these objects can be fascinating and dynamic systems, and may be the key to unlocking this long-standing mystery of how pulsars produce radio emissions."

Since the discovery of pulsars forty years ago, astronomers have been trying to understand how the rotating neutron stars produce their flashing radio signals. Although there have been many attempts to describe how they produce the extremely bright radio emissions, the vast magnetic field strengths of pulsars and the relativistic speeds involved make it extremely difficult to model. Brown dwarfs are now the second class of stellar object observed to produce this kind of powerful, amplified (coherent) radio signal at a persistent level.

The emissions from the brown dwarfs appear to be very similar to those observed from pulsars, but the whole system is on a much slower and smaller scale, so it is much easier to decipher exactly what is going on. Importantly, the mechanisms for producing the radio emissions in brown dwarfs are well understood, as they are almost identical to the processes that produce radio emissions from planets.

Hallinan said, "It looks like brown dwarfs are the missing step between the radio emissions we see generated at Jupiter and those we observe from pulsars".

Jupiter's volcanic moon, Io, is a source of electrically charged gas that is accelerated by the planet's magnetic field and causes powerful radio laser, or maser, emissions. The radiation can be so intense that Jupiter frequently outshines the Sun as a source of energy at radio wavelengths.

For some time, scientists have thought that there may be similarities between this type of maser emission and pulsars' lighthouse-like beams of radio waves. Observations of the brown dwarf, TVLM 513, using the Very Large Array (VLA) radio telescope, may provide the first direct evidence for that link. The group observed the brown dwarf over a period of 10 hours at two different frequencies. In both cases, a bright flash was observed every 1.96 hours.

As yet, the processes controlling the radio flashes from TVLM 513 are still unclear. There is no evidence of a binary system, so interaction of the magnetosphere with a stellar wind from a nearby star seems an unlikely cause, nor is there any sign of an orbiting planet that could produce a scenario like that of Jupiter and Io. However, rapid rotation is also thought to be a source of electron acceleration for a component of Jupiter's maser emission and this may also be the main source of TVLM 513's radio flashes.

The group is now planning a large survey of all the known brown dwarfs in the solar neighbourhood to find out how many are radio sources and how many of those are pulsing. If a large fraction of brown dwarfs are found to pulse, it could prove a key method of detection for these elusive objects.


Story Source:

The above story is based on materials provided by Royal Astronomical Society. Note: Materials may be edited for content and length.


Cite This Page:

Royal Astronomical Society. "Radio Active Brown Dwarfs Are A New Class Of Pulsar." ScienceDaily. ScienceDaily, 20 April 2007. <www.sciencedaily.com/releases/2007/04/070419111759.htm>.
Royal Astronomical Society. (2007, April 20). Radio Active Brown Dwarfs Are A New Class Of Pulsar. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2007/04/070419111759.htm
Royal Astronomical Society. "Radio Active Brown Dwarfs Are A New Class Of Pulsar." ScienceDaily. www.sciencedaily.com/releases/2007/04/070419111759.htm (accessed October 20, 2014).

Share This



More Space & Time News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Latin America Launches Communications Satellite

Latin America Launches Communications Satellite

AFP (Oct. 17, 2014) Argentina launches a home-built satellite, a first for Latin America. It will ride a French-made Ariane 5 rocket into orbit, and will provide cell phone, digital TV, Internet and data services to the lower half of South America. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
This Week @ NASA, October 17, 2014

This Week @ NASA, October 17, 2014

NASA (Oct. 17, 2014) Power spacewalk, MAVEN’s “First Light”, Hubble finds extremely distant galaxy and more... Video provided by NASA
Powered by NewsLook.com
Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Newsy (Oct. 17, 2014) The smallest of Saturn's main moons, Mimas, wobbles as it orbits. Research reveals it might be due to a global ocean underneath its icy surface. Video provided by Newsy
Powered by NewsLook.com
Comet Set for Rare Close Shave With Mars

Comet Set for Rare Close Shave With Mars

AFP (Oct. 16, 2014) A fast-moving comet is about to shave by Mars for a once-in-a-million-years encounter that a flurry of spacecraft around the Red Planet hope to capture and photograph, NASA said. Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins