Featured Research

from universities, journals, and other organizations

Understanding Schizophrenia: How Genetics, White-matter Defects, Dopamine Abnormalities And Disease Symptoms Are Associated

Date:
April 25, 2007
Source:
Children's Hospital Boston
Summary:
New research helps bridge an important gap in understanding schizophrenia, providing the best evidence to date that defects in the brain's white matter are a key contributor to the disease, which affects about 1 percent of people worldwide.

When NRG1-erbB signaling was blocked, oligodendrocytes from the brain's frontal cortex had a less complex structure than normal, forming fewer branches. Shown are three-dimensional reconstructions of oligodendrocytes from a normal mouse (left) and a mutant mouse (right).
Credit: Image courtesy Joshua Murtie, Ph.D., Children's Hospital Boston.

New research helps bridge an important gap in understanding schizophrenia, providing the best evidence to date that defects in the brain's white matter are a key contributor to the disease, which affects about 1 percent of people worldwide. The findings, to be published online by the Proceedings of the National Academy of Sciences during the week of April 23, also demonstrate how two of the dozen or more genes previously linked with schizophrenia may contribute to the disease.

Prior genetic studies had linked schizophrenia to the genes for neuregulin 1 (NRG1), a growth factor involved in brain development, and erbB4, a receptor on brain cells through which NRG1 exerts its action. But until now it hadn't been shown that alterations in these genes lead to psychiatric disorders. Working in a mouse model, researchers led by Gabriel Corfas, PhD, Kristine Roy, PhD, and Joshua Murtie, PhD, in the Children's Hospital Boston Neurobiology Program now demonstrate, for the first time, that alterations in NRG1-erbB signaling induce pathologic changes in the brain's white matter. They further show that these changes lead to alterations in biochemical signaling and to behaviors suggestive of mental illness.

"We show that causing a defect in white matter is sufficient to cause biochemical and behavioral changes resembling those seen in neuropsychiatric disorders," says Corfas, the study's senior author. "I think this will provide a new way of thinking about the causes of, and possibly, therapies for schizophrenia."

The findings could also have implications for bipolar disorder, which has also been linked with NRG1 and also involves white matter defects, he adds.

Working with mice, the researchers blocked NRG1-erbB signaling in oligodendrocytes --the cells that form the fatty sheath, known as myelin, which insulates nerve fibers. These myelinated nerve fibers make up the brain's white matter. When NRG1-erbB signaling was blocked, the mice had more oligodendrocytes than normal mice, but these cells had fewer branches and formed a significantly thinner myelin sheath around nerve fibers. As a result, the nerve fibers conducted electrical impulses more slowly, the researchers found.

The mice also had changes in the nerve cells that make and use dopamine, a key chemical in the brain that transmits messages from one nerve cell to another. The dopamine system has long been known to be altered in schizophrenia, and is the target of many antipsychotic drugs.

"Changing the white matter in the brain apparently unbalanced the dopamine system, something that also occurs in patients with neuropsychiatric disorders," says Corfas.

Finally, mice whose NRG1-erbB signaling was blocked showed behavioral changes that appeared to be consistent with mental illness. They explored their environment less than normal mice and had reduced social interaction, thought to be a manifestation of so-called "negative" schizophrenic symptoms such as decreased initiative and social withdrawal. The mice also showed behaviors suggestive of anxiety, a symptom seen in patients with schizophrenia and bipolar disorder, and increased sensitivity to amphetamine, also seen in many schizophrenia patients.

Is it possible to modify NRB1-erbB signaling with drugs, or otherwise protect oligodendrocytes (and white matter) as a way of treating or preventing schizophrenia?

"This is something that should be investigated," says Corfas. "People are thinking about ways to repair white matter as a treatment for multiple sclerosis, which is also a disease of white matter. That research could now be used in thinking about neuropsychiatric disorders."

Schizophrenia is typically diagnosed in late adolescence or early adulthood, but it is almost always preceded by subtle affective, cognitive or motor problems, Corfas adds. "We need to investigate whether the white-matter defects emerge early, before psychotic symptoms are evident," he says. "If they do, that raises the possibility of early diagnosis and preventive treatment."

The idea of schizophrenia arising from white-matter defects may also help explain the timing of its emergence, Corfas notes. Recent evidence suggests that myelination of the prefrontal cortex (a brain area that has been implicated in schizophrenia) occurs not only during infancy and toddlerhood, but also during late adolescence or early adulthood -- just when schizophrenia strikes.

"We now need to go back to patients with schizophrenia and see whether those with variants of the NRG1 and erbB4 genes have differences in their white matter," Corfas says. "It may be that there are different kinds of schizophrenia, arising from alterations in different genes, and that directed treatments could be developed for the different forms."

Corfas and colleagues also plan to investigate other genes linked with schizophrenia, studying whether they interact with NRG1-erbB signaling and how they may alter brain function.

The research was funded by the National Institute of Neurological Disorders and Stroke (NINDS), the National Multiple Sclerosis Society, the National Institute of Mental Health (NIMH), NARSAD: The Mental Health Research Association, and an NIH Development Disability Research Center Grant.


Story Source:

The above story is based on materials provided by Children's Hospital Boston. Note: Materials may be edited for content and length.


Cite This Page:

Children's Hospital Boston. "Understanding Schizophrenia: How Genetics, White-matter Defects, Dopamine Abnormalities And Disease Symptoms Are Associated." ScienceDaily. ScienceDaily, 25 April 2007. <www.sciencedaily.com/releases/2007/04/070423185615.htm>.
Children's Hospital Boston. (2007, April 25). Understanding Schizophrenia: How Genetics, White-matter Defects, Dopamine Abnormalities And Disease Symptoms Are Associated. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2007/04/070423185615.htm
Children's Hospital Boston. "Understanding Schizophrenia: How Genetics, White-matter Defects, Dopamine Abnormalities And Disease Symptoms Are Associated." ScienceDaily. www.sciencedaily.com/releases/2007/04/070423185615.htm (accessed April 16, 2014).

Share This



More Mind & Brain News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com
App Fights Jet Lag With The Power Of Math

App Fights Jet Lag With The Power Of Math

Newsy (Apr. 13, 2014) Researchers at the University of Michigan have designed an app to fight jet lag by adjusting your body's light intake. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins