Featured Research

from universities, journals, and other organizations

Discovery Of New Family Of Pseudo-metallic Chemicals

Date:
April 25, 2007
Source:
University of Missouri-Columbia
Summary:
A new discovery allows scientists to manipulate a molecule discovered 50 years ago in such as way as to give the molecule metal-like properties, creating a new, "pseudo" element. The pseudo-metal properties can be adjusted for a wide range of uses and might change the way scientists think about attacking disease or even building electronics.

Structure of pseudo-metallic closomer.
Credit: Image courtesy of University of Missouri-Columbia

The periodic table of elements, all 111 of them, just got a little competition. A new discovery by a University of Missouri-Columbia research team, published in Angewandte Chemie, the journal of the German Society of Chemists, allows scientists to manipulate a molecule discovered 50 years ago in such as way as to give the molecule metal-like properties, creating a new, "pseudo" element. The pseudo-metal properties can be adjusted for a wide range of uses and might change the way scientists think about attacking disease or even building electronics.

Five decades ago, Fred Hawthorne, professor of radiology and director of the International Institute for Nano and Molecular Medicine at MU, discovered an extremely stable molecule consisting of 12 boron atoms and 12 hydrogen atoms. Known as "boron cages," these molecules were difficult to change or manipulate, and sat dormant in Hawthorne's laboratory for many years.

Recently, Hawthorne's scientific team found a way to modify these cages, resulting in a large, new family of nano-sized compounds. In their study, which was published this month, Hawthorne, and Mark Lee, assistant professor at the institute and first author of the study, found that attaching different compounds to the cages gave them the properties of many different metals.

"Since the range of properties for these pseudo-metals is quite large, they might be referred to as 'psuedo-elements belonging to a completely new pseudo-periodic table,'" Lee said.

Potential applications of this discovery are abundant, especially in medicine.

"All living organisms are essentially a grand concert of chemical reactions involving the transfer of electrons between molecules and metals," Lee said. "The electron transfer properties of this new family of molecules span the entire range of those found within living systems. Because of this, these pseudo-metals may be tuned for use as specific probes in living systems to detect or treat disease at the earliest state."

In addition, because the compounds possess such a wide range of flexibility, they might have ramifications for nanotechnology and various kinds of electronics.

"This single discovery could open entirely new fields of study because of the controlled variability of the compounds," Lee said. "We have the ability to change the properties of these pseudo-metals, which gives us the opportunity to tailor them to our needs, whether that is biomedical, chemical or electronic applications, some of which may utilize nanoscience."


Story Source:

The above story is based on materials provided by University of Missouri-Columbia. Note: Materials may be edited for content and length.


Cite This Page:

University of Missouri-Columbia. "Discovery Of New Family Of Pseudo-metallic Chemicals." ScienceDaily. ScienceDaily, 25 April 2007. <www.sciencedaily.com/releases/2007/04/070424180758.htm>.
University of Missouri-Columbia. (2007, April 25). Discovery Of New Family Of Pseudo-metallic Chemicals. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2007/04/070424180758.htm
University of Missouri-Columbia. "Discovery Of New Family Of Pseudo-metallic Chemicals." ScienceDaily. www.sciencedaily.com/releases/2007/04/070424180758.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins