Featured Research

from universities, journals, and other organizations

Chinese Medicinal Compound Stops Formation Of Cysts In Polycystic Kidney Disease In Lab

Date:
April 30, 2007
Source:
Federation of American Societies for Experimental Biology
Summary:
Using a compound from a centuries-old Chinese traditional medicine, a Yale University researcher has been able to prevent the formation of kidney-destroying cysts in a mouse model of polycystic kidney disease.

Using a compound from a centuries-old Chinese traditional medicine, Yale University researcher Dr. Craig Crews has been able to prevent the formation of kidney-destroying cysts in a mouse model of polycystic kidney disease. This ability holds out hope for what would be the first treatment, other than kidney transplant or frequent dialysis, for one of the most lethal of all kidney diseases worldwide.

Related Articles


Triptolide is derived from a Chinese medicinal herb, named Lei Gong Teng, which has been used in traditional medicine to treat cancer, inflammation, and auto-immune diseases and, more recently, also has been tested in Phase I clinical trials as an anti-tumor agent.

This study, with mice bred to have a disease like human polycystic kidney disease, used triptolide with a less toxic concentration than that used in cancer chemotherapy trials. At that level, the compound marked reduced cyst formation in the mice compared to genetically similar mice not taking the compound.

During normal kidney development, cells lining the kidney tubules continue growing and dividing until they receive a signal that the tubule is fully formed. The switch that turns on that signal consists of the growth regulatory proteins PKD1 and PKD2, located on hair-like cilia in the lining of the developing tubules. When urine begins flowing through the tubules, the flow bends the cilia that sets off the signal that no more growth is needed.

In people who have a mutation in one of these growth regulatory proteins, however, the message to stop growing never gets delivered, even when urine is flowing and the cilia are bending. It is as if the phone is ringing but the cell can't hear it. So, never sensing a signal to stop, the cells lining the fully-formed kidney tubules keep right on subdividing and growing. The result of this hyperproliferative, unregulated growth: uncontrolled growth of cells lining the tubules and the formation of large cysts in the kidneys.

The vast majority - 85 percent - of patients with polycystic kidney disease have a gene causing PKD1 to be missing or to function poorly. Because most patients inherit only one abnormal gene and one functional gene, the body is usually able to compensate for the faulty gene and the person retains kidney function during the 20s and 30s. But through random mutagenesis, the remaining good copy of PKD1 is lost in some cells, which then switch to the hyperproliferative state. As the person's kidney begins to develop these cysts, the kidney begins to swell, and the person moves to either dialysis or transplant in order to survive.

That means a treatment that slows down the development of cysts does not have to stop their production completely to be effective, says Dr. Crews.

"If we were able to slow the rate of cyst formation by even 10 percent a year, compounded annually, patients would not die from this disease. A relatively small effect would have an enormous clinical benefit," says Dr. Crews.

Dr. Crews described the functioning of the compound at Experimental Biology 2007 in Washington, DC. His presentation on April 29 is part of the scientific program of the American Society for Biochemistry and Molecular Biology.

One of Dr. Crews' collaborators on this study, and one of the co-authors of this Experimental Biology presentation (and a related publication, earlier this month, in Proceedings of the National Academy of Science about the effect of the compound), is Dr. Stefan Somlo, chief of nephrology at Yale, who discovered the PDK2 gene. Other co-authors of the Experimental Biology presentation are Stephanie J. Leuenroth, Dayne Okuhara, Joseph D. Shotwell, Glen S. Markowitz, and Zhiheng Yu.

The researchers are continuing this research in different mouse models of polycystic kidney disease and hope to see the compound proceed to clinical trials in humans.


Story Source:

The above story is based on materials provided by Federation of American Societies for Experimental Biology. Note: Materials may be edited for content and length.


Cite This Page:

Federation of American Societies for Experimental Biology. "Chinese Medicinal Compound Stops Formation Of Cysts In Polycystic Kidney Disease In Lab." ScienceDaily. ScienceDaily, 30 April 2007. <www.sciencedaily.com/releases/2007/04/070429154947.htm>.
Federation of American Societies for Experimental Biology. (2007, April 30). Chinese Medicinal Compound Stops Formation Of Cysts In Polycystic Kidney Disease In Lab. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2007/04/070429154947.htm
Federation of American Societies for Experimental Biology. "Chinese Medicinal Compound Stops Formation Of Cysts In Polycystic Kidney Disease In Lab." ScienceDaily. www.sciencedaily.com/releases/2007/04/070429154947.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins