Featured Research

from universities, journals, and other organizations

Cluster Makes A Shocking Discovery

Date:
May 14, 2007
Source:
European Space Agency
Summary:
ESA's Cluster was in the right place and time to make a shocking discovery. The four spacecraft encountered a shock wave that kept breaking and reforming -- predicted only in theory.

The image shows a bow shock around the very young star, LL Ori. It is located in the intense star-forming region known as the Great Nebula in the constellation Orion. A bow shock can be created in space when two streams of gas collide.
Credit: NASA/ESA and The Hubble Heritage Team STScI/AURA

ESA’s Cluster was in the right place and time to make a shocking discovery. The four spacecraft encountered a shock wave that kept breaking and reforming – predicted only in theory.

On 24 January 2001, Cluster’s spacecraft observed shock reformation in the Earth’s magnetosphere, predicted only in theory, over 20 years ago. Cluster provided the first opportunity ever to observe such an event.

The shock wave that sits above the Earth’s surface is a natural phenomenon. It is located on the side facing the Sun, at approximately one quarter of the distance to the Moon, and is caused by the flow of electrically charged particles from the Sun.

This flow of electrically charged particles known as solar wind is emitted in a gusty manner by the Sun. When it collides with the Earth’s magnetic field, it is abruptly slowed down and this causes a barrier of electrified gas, called the bow shock, to build up. It behaves in the same way as water being pushed out of the way by the front of a ship.

On 24 January 2001, the four Cluster spacecraft were flying at an approximate altitude of 105 000 kilometres, in tetrahedron formation. Each spacecraft was separated from the others by a distance of about 600 kilometres. With such a distance between them, as they approached the bow shock, scientists expected that every spacecraft would record a similar signature of the passage through this region.

Instead, the readings they got were highly contradictory. They showed large fluctuations in the magnetic and electric field surrounding each spacecraft. They also revealed marked variations in the number of solar wind protons that were reflected by the shock and streaming back to Sun.

“The features derived from three different scientific experiments on the Cluster satellites provide the first convincing evidence in favour of the shock reformation model,” says Vasili Lobzin of the Centre National de la Recherche Scientifique, Orlιans, France, who headed this study.

Vladimir Krasnoselskikh, also of the Centre National de la Recherche Scientifique, Orlιans, France, who is a collaborator on this new research, had predicted the shock reformation model theoretically in 1985. It is a little similar to the way waves in the ocean build up and then break onto the shore, only to reform again, some way out to sea.

The detection has implications for the way astronomers investigate larger bow shocks around distant celestial objects. Bow shocks are related to some of the most energetic events in the Universe. Exploding stars and strong stellar winds from young stars cause them. Reforming bow shocks can also accelerate particles to extremely high energies and throw them across space.

Although the conditions that cause the reformation of a shock wave are rare around the Earth, they are common around these other celestial objects. “In astrophysical situations, the conditions needed for the bow shock to overturn and reform is almost always met,” says Krasnoselskikh.

The fact that Cluster has given scientists their first concrete data from such a bow shock reformation event is a valuable gift to space physicists. “This is a unique opportunity to study distant astrophysical objects in the kind of detail not available in any laboratory,” says Krasnoselskikh.

“Understanding the physics of shocks is essential for comprehending both complex astrophysical phenomena and accurately forecasts of the nearby space environment,” says Philippe Escoubet, Cluster and Double Star project scientist at ESA. “Once again Cluster has demonstrated the need for formation flying with multiple spacecraft to augment our knowledge of shocks.”

The findings presented above appear in the paper, ‘Nonstationarity and reformation of high-Mach-number quasiperpendicular shocks: Cluster observations’, by V.V. Lobzin et al. published on 9 March 2007 in the Geophysical Research Letters.


Story Source:

The above story is based on materials provided by European Space Agency. Note: Materials may be edited for content and length.


Cite This Page:

European Space Agency. "Cluster Makes A Shocking Discovery." ScienceDaily. ScienceDaily, 14 May 2007. <www.sciencedaily.com/releases/2007/05/070514110612.htm>.
European Space Agency. (2007, May 14). Cluster Makes A Shocking Discovery. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2007/05/070514110612.htm
European Space Agency. "Cluster Makes A Shocking Discovery." ScienceDaily. www.sciencedaily.com/releases/2007/05/070514110612.htm (accessed July 22, 2014).

Share This




More Space & Time News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) — A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) — NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) — Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, July 18, 2014

This Week @ NASA, July 18, 2014

NASA (July 18, 2014) — Apollo 11 yesterday, Next Giant Leap tomorrow, Science instruments for Europa mission, and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins