Featured Research

from universities, journals, and other organizations

Alteration In Gene Associated With Uterine Cancer Identified

Date:
May 24, 2007
Source:
The Translational Genomics Research Institute
Summary:
Scientists have discovered previously unrecognized alterations in a gene called FGFR2 in a subset of endometrial cancers, the most common gynecologic cancer in the United States. The mutations in FGFR2 result in uncontrolled cell division, a hallmark of cancer.

Researchers at the Translational Genomics Research Institute (TGen) today announced the discovery of previously unrecognized alterations in a gene called FGFR2 in a subset of endometrial cancers, the most common gynecologic cancer in the United States. The mutations in FGFR2 result in uncontrolled cell division, a hallmark of cancer.

Related Articles


The findings, reported by TGen and research colleagues at Washington University School of Medicine in St. Louis, the Wellcome Trust Sanger Institute, which is part of Cambridge University, and New York University School of Medicine, could accelerate the development of new treatments for endometrial cancer because there are drugs already in clinical trials that inhibit FGFR2 function. The study appears in the May 21, 2007 online version of the journal Oncogene.

Nearly 40,000 women are diagnosed with endometrial cancer each year, making it the fourth most common cancer found in women, following breast cancer, lung cancer and colon cancer. Endometrial cancer usually begins in the lining of the uterus and is most commonly found in women between the ages of 60 and 70. If discovered early, this slow-growing cancer can be successfully treated by surgical removal of the uterus. However, about 7,000 women die each year from the more aggressive form of endometrial cancer.

Researchers at TGen used the latest genome-scanning technology to sequence 187 endometrial tumor samples. The research team identified mutations in FGFR2 in 16% of tumors that represented a specific subset of endometrial cancer. The other types of endometrial cancer did not have these mutations. The FGFR2 gene encodes a protein that plays a critical role in cell growth. In patients with FGFR2 mutations, the tumors were caused by the receptor for this protein being permanently stuck in the "on" position.

"Mutations in several genes have previously been identified in Endometrial cancer, however they have not been druggable targets," said Dr. Pamela Pollock, Head of TGenΉs Melanoma Research Unit, who spent several years studying the FGFR2 gene in melanoma. "We are excited about this discovery in that the testing of drugs designed to inhibit this gene in early clinical trials means that we are one step closer to personalized medicine for women with endometrial cancer driven by an altered FGFR2 gene."

Dr. Paul Goodfellow, an expert in endometrial cancer and a professor within the departments of surgery, genetics and obstetrics and gynecology at Washington University School of Medicine, and Dr. Pollock are planning additional studies to investigate whether two drugs currently in Phase I trials for other cancers inhibit endometrial cell growth in the laboratory. Future studies include testing these drugs in mouse models of endometrial cancer before being tested in humans.

"We are planning to investigate FGFR2 in tumors from a much larger group of patients to determine whether mutations in the gene lead to aggressive cancers and poor outcome. Given how frequent mutations are in endometrial cancers, we are hopeful we will be able to initiate a Phase II trial treating patients with an FGFR2 inhibitor within the next two to three years," said Dr. Goodfellow, also co-director of the Hereditary Cancer Core at the Siteman Cancer Center at Washington University School of Medicine and Barnes-Jewish Hospital in St. Louis.

"This study illustrates the power of systematic searches for mutations in cancer genomes in identifying the abnormal genes responsible for driving cancers and providing new therapeutic avenues," said Dr. Michael Stratton, who along with Dr. Andrew Futreal, co-leads the Cancer Genome Project at the Wellcome Trust Sanger Institute.

The identification of the FGFR2 gene and its role in the development of endometrial cancer is a great example of scientific collaboration. Dr. Pollock has studied the FGFR2 gene in melanoma for more than three years. The team headed by Drs. Stratton and Futreal at the Cancer Genome Project at the Wellcome Trust Sanger Institute found preliminary data hinting that FGFR2 might play an important role in endometrial cancer. Dr. Pollock then established a collaboration with Dr. Goodfellow, who provided tumor samples representative of the different types of uterine cancers, as well as a wealth of expertise on endometrial cancer.

"This partnership between researchers at TGen and Washington University School of Medicine combined with previous work in endometrial cancer performed at Cambridge University opened the door for new discoveries to be made," said Dr. Jeffrey Trent, Scientific Director of TGen.


Story Source:

The above story is based on materials provided by The Translational Genomics Research Institute. Note: Materials may be edited for content and length.


Cite This Page:

The Translational Genomics Research Institute. "Alteration In Gene Associated With Uterine Cancer Identified." ScienceDaily. ScienceDaily, 24 May 2007. <www.sciencedaily.com/releases/2007/05/070523113726.htm>.
The Translational Genomics Research Institute. (2007, May 24). Alteration In Gene Associated With Uterine Cancer Identified. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2007/05/070523113726.htm
The Translational Genomics Research Institute. "Alteration In Gene Associated With Uterine Cancer Identified." ScienceDaily. www.sciencedaily.com/releases/2007/05/070523113726.htm (accessed October 30, 2014).

Share This



More Health & Medicine News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) — A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Google To Use Nanoparticles, Wearables To Detect Disease

Google To Use Nanoparticles, Wearables To Detect Disease

Newsy (Oct. 29, 2014) — Google X wants to improve modern medicine with nanoparticles and a wearable device. It's all an attempt to tackle disease detection and prevention. Video provided by Newsy
Powered by NewsLook.com
Can Drinking Milk Lead To Early Death?

Can Drinking Milk Lead To Early Death?

Newsy (Oct. 29, 2014) — Researchers in Sweden released a study showing heavy milk drinkers face an increased mortality risk from a variety of causes. Video provided by Newsy
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) — Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins