Featured Research

from universities, journals, and other organizations

How Brain Pacemakers Erase Diseased Messages

Date:
May 31, 2007
Source:
Duke University
Summary:
Brain "pacemakers" that have helped ease symptoms in people with Parkinson's disease and other movement disorders seem to work by drowning out the electrical signals of their diseased brains, biomedical engineers have found. A better understanding of the processes underlying deep brain stimulation could enable physicians to better fine-tune electrical implants.

Brain "pacemakers" that have helped ease symptoms in people with Parkinson's disease and other movement disorders seem to work by drowning out the electrical signals of their diseased brains.

Related Articles


Despite the clinical success of the devices, which have been approved by the Food and Drug Administration and can be found in the heads of about 30,000 Americans, the mechanisms by which deep brain stimulation alleviates disease symptoms aren't well understood.

Biomedical engineers at Duke University's Pratt School of Engineering have found that stimulation administered by rapid-fire electrical pulses deep in the brain produces what they call an "informational lesion." By relaying a repetitious and therefore meaningless message, constant pulses overwhelm the erratic bursts of brain activity characteristic of disease.

"Periodic bursts in the brains of people with tremor -- which might follow a pattern such as 'pop-pop-pop, silence, pop-pop-pop, silence' -- propagate pathological information within brain circuits," said Warren Grill, the study's lead investigator and an associate professor of biomedical engineering. "If you replace that instead with a constant 'pop-pop-pop-pop-pop-pop,' you've erased that pathological information."

Grill said the high-frequency deep brain stimulation acts like a surgical lesion, another acceptable treatment for severe tremor disorders and epilepsies. But the electronic device has the advantage of being adjustable or reversible.

The researchers' report appears in a special June 2007 issue of the journal IEEE Transactions on Neural Systems and Rehabilitation Engineering, edited in part by Grill. The study was conducted by a team that included Alexis Kuncel, a doctoral student in biomedical engineering at Duke, and Scott Cooper, a neurologist at the Cleveland Clinic, with support from the National Institutes of Health.

The FDA approved the use of deep brain stimulation for Parkinson's disease in 1997. The electrical implants are also an approved therapy for other movement disorders and are at various stages of testing for the treatment of epilepsy, depression, obsessive-compulsive disorder and pain, according to Grill.

The complexity of the brain -- in which nerves project in all directions and connect with one another to form multiple, looping networks -- makes studying how deep brain stimulation works a challenge, Grill said.

Grill's team created a mathematical model of a normally functioning brain cell. The researchers then gave the model neuron the pathological pattern of activity seen in people with tremors, assembled a group of these model cells and watched what would happen when the cells were electrically stimulated at various rates and intensities.

In addition to showing how the therapy works, their model of neurons in action also revealed that stimulation delivered at too slow a pace fails to keep bad information at bay. Indeed, slower pulses can actually add to problematic bursts, they showed.

The model's findings closely parallel the clinical responses of patients, who typically experience the greatest relief from symptoms when their devices are tuned by physicians to deliver rapid pulses, Grill said. Patients' symptoms can actually worsen when the devices are dialed to a slower setting.

The intensity of stimulation also plays an important role, the study suggests, by determining the number of brain cells affected by a particular series of pulses.

A better understanding of the processes underlying deep brain stimulation could enable physicians to better fine-tune electrical implants, Grill said. That could be particularly useful for zeroing in on effective settings for implants used to treat diseases, such as epilepsy, in which seizures occur only sporadically, as well as conditions, such as depression, in which symptoms can vary widely from day to day.

"In the case of tremor, physicians can alter the setting until they see the symptoms stop," Grill said. "You don't have to know how it's really working.

"In a condition like epilepsy, however, it's extremely unlikely that a person would have a seizure in the doctor's office," he said. "Therefore, it might take months of trial and error to find the optimal setting." Grill's new model promises to streamline the process.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "How Brain Pacemakers Erase Diseased Messages." ScienceDaily. ScienceDaily, 31 May 2007. <www.sciencedaily.com/releases/2007/05/070530122217.htm>.
Duke University. (2007, May 31). How Brain Pacemakers Erase Diseased Messages. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2007/05/070530122217.htm
Duke University. "How Brain Pacemakers Erase Diseased Messages." ScienceDaily. www.sciencedaily.com/releases/2007/05/070530122217.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com
1st Responders Trained for Autism Sensitivity

1st Responders Trained for Autism Sensitivity

AP (Dec. 16, 2014) More departments are ordering their first responders to sit in on training sessions that focus on how to more effectively interact with those with autism spectrum disorder (Dec. 16) Video provided by AP
Powered by NewsLook.com
Guys Are Idiots, According To Sarcastic Study

Guys Are Idiots, According To Sarcastic Study

Newsy (Dec. 12, 2014) A study out of Britain suggest men are more idiotic than women based on the rate of accidental deaths and other factors. Video provided by Newsy
Powered by NewsLook.com
Believing in Father Christmas Good for Children's Imaginations

Believing in Father Christmas Good for Children's Imaginations

AFP (Dec. 12, 2014) As the countdown to Christmas gets underway, so too does the Father Christmas conspiracy. But psychologists say that telling our children about Santa, flying reindeer and elves is good for their imaginations. Duration: 01:57 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins