Featured Research

from universities, journals, and other organizations

'Quantum Keys' Sent 200 Kilometers: New Long-distance Record

Date:
June 3, 2007
Source:
National Institute of Standards and Technology
Summary:
Particles of light serving as "quantum keys" -- the latest in encryption technology -- have been sent over a record-setting 200-kilometer fiber-optic link by scientists. The experiment, using mostly standard components and transmitting at telecommunications frequencies, offers an approach for making practical inter-city terrestrial quantum communications networks as well as long-range wireless systems using communication satellites.

Schematic represents cryogenic packaging system constructed at NIST for the single-photon detector used in a record-setting quantum key distribution experiment. Orange area represents a copper mount, part of the cryogenic packaging. Photons are transmitted to a superconducting detector (white rectangle in the center) through an optical fiber (at bottom of schematic). Inset microphotograph shows the view through a hole in the packaging (roughly 250 micrometers across) where photons from the fiber are hitting the detector.
Credit: NIST

Particles of light serving as "quantum keys"--the latest in encryption technology--have been sent over a record-setting 200-kilometer fiber-optic link by researchers from the National Institute of Standards and Technology (NIST), NTT Corp. in Japan, and Stanford University. The experiment, using mostly standard components and transmitting at telecommunications frequencies, offers an approach for making practical inter-city terrestrial quantum communications networks as well as long-range wireless systems using communication satellites.

The demonstration, described in Nature Photonics,* was conducted in a Stanford lab with optical fiber wrapped around a spool. In addition to setting a distance record for quantum key distribution (QKD), it also is the first gigabit-rate experiment--transmitting at 10 billion light pulses per second--to produce secure keys.

The rate of processed key production--the keys corrected for errors and enhanced for privacy--was much lower due to the long distance involved, and the key was not used to encrypt a digital message as it would be in a complete QKD system. QKD systems transmit a stream of single photons with their electric fields in different orientations to represent 1s and 0s, which are used to make quantum keys to encrypt and decrypt messages. Properly executed, quantum encryption is "unbreakable" because eavesdropping changes the state of the photons.

A key aspect of the experiment is the use of ultrafast superconducting single-photon detectors developed in Russia, with packaging and cooling technology custom-made at NIST labs in Boulder, Colo. Counting single photons (the smallest particles of light) rapidly and reliably has been a major challenge limiting the development of practical QKD systems.

The Russian detectors have very low false count rates because of their low-noise cryogenic operation, as well as superior timing resolution due to the physics of superconductors, in which electrons can switch from excited to relaxed states in just trillionths of a second. Each detector consists of a superconducting niobium nitride nanowire operating just below the "critical current" at which it conducts electricity without resistance. When a single photon hits the wire, a hot spot is formed, and the current density increases until it exceeds the critical current. At this point, a non-superconducting barrier forms across the wire, and a voltage pulse is created. The starting edge of the voltage pulse pinpoints the photon's arrival time.

Sae Woo Nam, a NIST physicist who packaged the detectors, said NIST offers unique expertise in connecting the single-photon detector chips to optical fiber and in designing refrigeration systems to operate at -270 degrees C (-454 degrees F) without liquid cryogens. "You need to know how to efficiently get light to the detector and how to amplify the signals," he says.

The detectors were designed and fabricated at the Moscow State Pedagogical University. The project was supported by the Japan Science and Technology Agency, National Institute of Information and Communications Technology of Japan, MURI Center for Photonic Quantum Information Systems, Disruptive Technology Office, Defense Advanced Research Projects Agency, and NIST.

*H. Takesue, S.W. Nam, Q. Zhang, R.H. Hadfield, T. Honjo, K. Tamaki and Y. Yamamoto. Quantum key distribution over 40 dB channel loss using superconducting single photon detectors. Nature Photonics. June 1.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "'Quantum Keys' Sent 200 Kilometers: New Long-distance Record." ScienceDaily. ScienceDaily, 3 June 2007. <www.sciencedaily.com/releases/2007/06/070601162438.htm>.
National Institute of Standards and Technology. (2007, June 3). 'Quantum Keys' Sent 200 Kilometers: New Long-distance Record. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2007/06/070601162438.htm
National Institute of Standards and Technology. "'Quantum Keys' Sent 200 Kilometers: New Long-distance Record." ScienceDaily. www.sciencedaily.com/releases/2007/06/070601162438.htm (accessed October 21, 2014).

Share This



More Computers & Math News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Apple Enters Mobile Payment Business

Apple Enters Mobile Payment Business

AP (Oct. 20, 2014) — Apple is making a strategic bet with the launch of Apple Pay, the mobile pay service aimed at turning your iPhone into your wallet. (Oct. 20) Video provided by AP
Powered by NewsLook.com
Google To Protect Against Piracy ... At A Cost

Google To Protect Against Piracy ... At A Cost

Newsy (Oct. 20, 2014) — Google is changing its search-engine results to protect content producers from piracy — for a price. Video provided by Newsy
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) — Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins