Featured Research

from universities, journals, and other organizations

A Step Nearer To Understanding Superconductivity

Date:
June 7, 2007
Source:
CNRS
Summary:
Transporting energy without any loss, travelling in magnetically levitated trains, carrying out medical imaging (MRI) with small-scale equipment: all these things could come true if we had superconducting materials that worked at room temperature. Researchers have now taken another step forward on the road leading to this ultimate goal. They have revealed the metallic nature of a class of so-called critical high-temperature superconducting materials.

Magnetic levitation experiment: The car contains two disks of YBa2Cu3O7 -- a high-temperature superconductor, cooled with liquid nitrogen. The road made up of magnets creates a magnetic field which cannot penetrate the car. All occurs as if the magnetic field were a very strong draught which would raise the car. In the absence of friction, it is then enough to give a starting impulse to the car so that it advances (indefinitely) on the road.
Credit: Copyright J. Billette - CNRS 2007

Transporting energy without any loss, travelling in magnetically levitated trains, carrying out medical imaging (MRI) with small-scale equipment: all these things could come true if we had superconducting materials that worked at room temperature. Researchers at CNRS have now taken another step forward on the road leading to this ultimate goal. They have revealed the metallic nature of a class of so-called critical high-temperature superconducting materials.

This result, which was published in the 31 May 2007 issue of the journal Nature, has been eagerly awaited for 20 years. It paves the way to an understanding of this phenomenon and makes it possible to contemplate its complete theoretical description.

Superconductivity is a state of matter characterized by zero electrical resistance and impermeability to a magnetic field. For instance, it is already used in medical imaging (MRI devices), and could find spectacular applications in the transport and storage of electrical energy without loss, the development of transport systems based on magnetic levitation, wireless communication and even quantum computers.

However, for now, such applications are limited by the fact that superconductivity only occurs at very low temperatures. In fact, it was only once a way of liquefying helium had been developed, which requires a temperature of 4.2 kelvins (-269 C), that superconductivity was discovered, in 1911 (a discovery for which the Nobel Prize was awarded two years later.)

Since the end of the 1980s (Nobel Prize in 1987), researchers have managed to obtain 'high temperature' superconducting materials: some of these compounds can be made superconducting simply by using liquid nitrogen (77 K, or -196 C). The record critical temperature (the phase transition temperature below which superconductivity occurs) is today 138 K (-135 C).

This new class of superconductors, which are easier and cheaper to use, has given fresh impetus to the race to find ever higher critical temperatures, with the ultimate goal of obtaining materials which are superconducting at room temperature. However, until now, researchers have been held back by some fundamental questions. What causes superconductivity at microscopic scales" How do electrons behave in such materials"

Researchers at the National Laboratory for Pulsed Magnetic Fields2, working together with researchers at Sherbrooke, have observed 'quantum oscillations', thanks to their experience in working with intense magnetic fields. They subjected their samples to a magnetic field of as much as 62 teslas (a million times stronger than the Earth's magnetic field), at very low temperatures (between 1.5 K and 4.2 K).

The magnetic field destroys the superconducting state, and the sample, now in a normal state, shows an oscillation of its electrical resistance as a function of the magnetic field. Such an oscillation is characteristic of metals: it means that, in the samples that were studied, the electrons behaved in the same way as in ordinary metals.

The researchers will be able to use this discovery, which has been eagerly awaited for 20 years, to improve their understanding of critical high-temperature superconductivity, which until now had resisted all attempts at modeling it. The discovery has been effective in sorting out the many theories which had emerged to explain the phenomenon, and provides a firm foundation on which to build a new theory. It will make it possible to design more efficient materials, with critical temperatures closer to room temperature.

Reference: Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor, Nicolas Doiron-Leyraud, Cyril Proust, David LeBoeuf, Julien Levallois, Jean-Baptiste Bonnemaison, Ruixing Liang, D. A. Bonn, W. N. Hardy, Louis Taillefer, Nature, 31 May 2007, Vol 447, pp 565-568.


Story Source:

The above story is based on materials provided by CNRS. Note: Materials may be edited for content and length.


Cite This Page:

CNRS. "A Step Nearer To Understanding Superconductivity." ScienceDaily. ScienceDaily, 7 June 2007. <www.sciencedaily.com/releases/2007/06/070606113408.htm>.
CNRS. (2007, June 7). A Step Nearer To Understanding Superconductivity. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2007/06/070606113408.htm
CNRS. "A Step Nearer To Understanding Superconductivity." ScienceDaily. www.sciencedaily.com/releases/2007/06/070606113408.htm (accessed August 27, 2014).

Share This




More Matter & Energy News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins